Physics of the Solid State

, Volume 58, Issue 4, pp 703–710 | Cite as

Strength and microplasticity of biocarbons prepared by carbonization in the presence of a catalyst

Mechanical Properties, Physics Of Strength, and Plasticity

Abstract

The microdeformation has been investigated under uniaxial compression of beech-derived biocarbons partially graphitized during carbonization in the presence of a Ni- or Fe-containing catalyst. The strength and ultimate fracture strain have been determined at different temperatures of carbonization of the samples in the absence or in the presence of a catalyst. It has been shown using high-precision interferometry that the deformation of biocarbon samples under uniaxial loading occurs through jumps (in magnitude and rate of deformation) with axial displacements in the nanometer and micrometer ranges. The use of a catalyst leads to a decrease in the size of nanometer-scale jumps and in the number of micrometer-scale jumps. The standard deviations of the strain rate on loading steps from the smooth average dependence of the strain rate on the displacement have been calculated for micrometer-scale jumps. A similar characteristic for nanometer- scale jumps has been determined from the distortion of the shape of beats in the primary interferogram. It has been shown that the variation in the standard deviation of the strain rate with a change in the carbonization temperature is similar to the corresponding dependence of the ultimate fracture strain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. P. Wang, L. Zhang, and J. J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  2. 2.
    C. Peng, X. B. Yan, R. T. Wang, J. W. Lang, Y. J. Ou, and Q. J. Xue, Acta Electrochim. 87, 401 (2013).CrossRefGoogle Scholar
  3. 3.
    A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).CrossRefGoogle Scholar
  4. 4.
    L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  5. 5.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).CrossRefGoogle Scholar
  7. 7.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26 (1), 18 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas- Rodriguez, and J. Martinez-Fernandez, J. Power Sources 278, 18 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Shpeizman, N. N. Peschanskaya, T. S. Orlova, and B. I. Smirnov, Phys. Solid State 51 (12), 2458 (2009).CrossRefGoogle Scholar
  11. 11.
    V. V. Shpeizman, T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 56 (3), 538 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Shpeizman, T. S. Orlova, B. I. Smirnov, A. Gutierrez- Pardo, and J. Ramirez-Rico, Mater. Phys. Mech. 21, 200 (2014).Google Scholar
  13. 13.
    N. N. Peschanskaya, P. N. Yakushev, and V. A. Stepanov, Sov. Phys. Solid State 26 (4), 729 (1984).Google Scholar
  14. 14.
    N. N. Peschanskaya, V. V. Shpeizman, A. B. Sinani, and B. I. Smirnov, Phys. Solid State 46 (11), 2058 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Shpeizman and N. N. Peschanskaya, Phys. Solid State 51 (6), 1149 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 55 (9), 1884 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    A. Gutierrez-Pardo, J. Ramirez-Rico, A. R. de Arellano- Lopez, and J. Martinez-Fernandez, J. Mater. Sci. 49, 7688 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    A. Gutierrez-Pardo, Tesis Doctoral (Universidad de Sevilla, Sevilla, Spain), ES41080.Google Scholar
  20. 20.
    J. B. Condon, Surface Area and Porosity Determinations by Physisorption, Chap. 1: An Overview of Physisorption (Elsevier, Amsterdam, 2006), p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Departamento de Fisica de la Materia Condensada—Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations