Advertisement

Physics of the Solid State

, Volume 58, Issue 2, pp 421–426 | Cite as

Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy

  • V. G. Vlasenko
  • S. S. Podsukhina
  • A. V. Kozinkin
  • Ya. V. Zubavichus
Thermal Properties
  • 44 Downloads

Abstract

The anharmonicity parameters of the interatomic potential in ~4-nm palladium nanoparticles deposited on poly(tetra)fluoroethylene microgranules 0.2–0.5 μm in average size were studied by X-ray absorption spectroscopy from an analysis of temperature-dependent EXAFS Pd K edges. The parameters of the interatomic potential obtained were used to calculate melting temperature T melt = 1591 K and Debye temperature ΘD = 257 K of palladium nanoparticles; these temperatures are significantly lower than those in metallic palladium: 277 K and 1825 K, respectively.

Keywords

Palladium Debye Temperature Interatomic Potential Coordination Shell Palladium Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Frenkel and J. J. Rehr, Phys. Rev. B: Condens. Matter 48, 585 (1993).CrossRefADSGoogle Scholar
  2. 2.
    N. V. Hung and J. J. Rehr, Phys. Rev. B: Condens. Matter 56, 43 (1997).CrossRefADSGoogle Scholar
  3. 3.
    G. Bunker, Nucl. Instrum. Methods Phys. Res. 207, 437 (1983).CrossRefADSGoogle Scholar
  4. 4.
    J. M. Tranquada and R. Ingalls, Phys. Rev. B: Condens. Matter 28, 3520 (1983).CrossRefADSGoogle Scholar
  5. 5.
    J. Freund, R. Ingalls, and E. D. Grozier, Phys. Rev. B: Condens. Matter 39, 12537 (1989).CrossRefADSGoogle Scholar
  6. 6.
    D. E. Sayers and B. Bunker, X-Ray Absorption: Principles, Applications,Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988), p. 211.Google Scholar
  7. 7.
    J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).CrossRefGoogle Scholar
  8. 8.
    J. J. Rehr and R. C. Albers, Phys. Rev. B: Condens. Matter 41, 8139 (1990).CrossRefADSGoogle Scholar
  9. 9.
    N. V. Hung, N. B. Trung, and N. B. Duc, J. Mater. Sci. Appl. 1, 51 (2015).Google Scholar
  10. 10.
    J. Haug, A. Chassé, R. Schneider, H. Kruth, and M. Dubiel, Phys. Rev. B: Condens. Matter 77, 184115 (2008).CrossRefADSGoogle Scholar
  11. 11.
    E. D. Crozier and A. J. Seary, Can. J. Phys. 58, 1388 (1980).ADSGoogle Scholar
  12. 12.
    E. A. Stern, P. Livinc, and Z. Zhang, Phys. Rev. B: Condens. Matter 43, 8850 (1991).CrossRefADSGoogle Scholar
  13. 13.
    M. G. Newville, PhD Thesis (University of Washington, Washington, 1995).Google Scholar
  14. 14.
    L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).CrossRefADSGoogle Scholar
  15. 15.
    M. Okube and A. Yoshiasa, J. Synchrotron Radiat. 8, 937 (2001).CrossRefGoogle Scholar
  16. 16.
    I. V. Pirog, T. I. Nedoseikina, A. T. Shuvaev, and I. A. Zarubin, J. Phys.: Condens. Matter. 14, 1825 (2002).ADSGoogle Scholar
  17. 17.
    I. V. Pirog and T. I. Nedoseikina, Physica B (Amsterdam) 334, 123 (2003).CrossRefADSGoogle Scholar
  18. 18.
    T. Yokoyama, S. Kimoto, and T. Ohta, Jpn. J. Appl. Phys. 28, L851 (1989).CrossRefADSGoogle Scholar
  19. 19.
    T. Yokoyama and T. Ohta, Jpn. J. Appl. Phys. 29, 2052 (1990).CrossRefADSGoogle Scholar
  20. 20.
    T. Yokoyama, N. Kosugi, K. Asakura, Y. Iwasawa, and H. Kuroda, J. Phys. (Paris) 47, C8273 (1986).CrossRefGoogle Scholar
  21. 21.
    S. P. Gubin, G. Yu. Yurkov, M. S. Korobov, Yu. A. Koksharov, A. V. Kozinkin, I. V. Pirog, S. V. Zubkov, V. V. Kitaev, D. A. Sarichev, V. M. Bouznik, and A. K. Tsvetnikov, Acta Mater. 53, 1407 (2005).CrossRefGoogle Scholar
  22. 22.
    O. A. Belyakova, Y. V. Zubavichus, I. S. Neretin, A. S. Golub, Yu. N. Novikov, E. G. Mednikov, M. N. Vargaftik, I. I. Moiseev, and Y. L. Slovokhotov, J. Alloy Compd. 382, 46 (2004).CrossRefGoogle Scholar
  23. 23.
    G. Guisbiers, J. Nanosci. Lett. 2 (8), 1 (2012).Google Scholar
  24. 24.
    S. C. Vanithakumari and K. K. Nanda, Phys. Lett. A 372, 6930 (2008).CrossRefADSzbMATHGoogle Scholar
  25. 25.
    R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).CrossRefADSGoogle Scholar
  26. 26.
    M. Attarian Shandiz, A. Safaei, S. Sanjabi, and Z. H. Barber, Solid State Commun. 145, 432 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. G. Vlasenko
    • 1
  • S. S. Podsukhina
    • 1
  • A. V. Kozinkin
    • 1
  • Ya. V. Zubavichus
    • 2
  1. 1.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.National Scientific Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations