Physics of the Solid State

, Volume 58, Issue 2, pp 300–308 | Cite as

Phase transitions and metastable states in stressed SrTiO3 films

Ferroelectricity

Abstract

The sequence of the ground states in SrTiO3 films subjected to epitaxial strain and fixed mechanical stress in the [001] and [110] directions is calculated from first principles within the density functional theory. Under the fixed-strain conditions, an increase in the substrate lattice parameter results in the following sequence of the ground states: I4cmI4/mcmIma2 → CmFmm2 → Ima2(II). When moving to the fixed-stress conditions, the phase sequence changes significantly and depends on how the stress is applied. It is revealed that the simultaneous presence of two types of the lattice instability (the ferroelectric and structural ones) in strontium titanate leads to the formation of a whole system of metastable phases whose number increases abruptly under the fixed-stress conditions. The stability of these phases changes with pressure and phase transitions occur between them. The appearance of broad bistability regions in certain parts of the phase diagram enables the use of this phenomenon for developing nonvolatile phase-change memory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, Boca Raton, Florida, United States, 2011).Google Scholar
  2. 2.
    Strained Silicon Heterostructures: Materials and Devices, Ed. by C. K. Maiti, N. B. Chakrabarti, and S. K. Ray (The Institution of Electrical Engineers, London, United Kingdom, 2001).Google Scholar
  3. 3.
    Pseudomorphic HEMT Technology and Applications, Ed. by R. L. Ross, S. P. Svensson, and P. Lugli (Kluwer, Dordrecht, The Netherlands, 1996).Google Scholar
  4. 4.
    N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B: Condens. Matter 61, R825 (2000).CrossRefADSGoogle Scholar
  5. 5.
    J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, Nature (London) 430, 758 (2004).CrossRefADSGoogle Scholar
  6. 6.
    C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).CrossRefADSGoogle Scholar
  7. 7.
    E. A. Eliseev, M. D. Glinchuk, and A. N. Morozovska, Phys. Status Solidi B 244, 3660 (2007).CrossRefADSGoogle Scholar
  8. 8.
    A. R. Akbarzadeh, L. Bellaiche, J. Iñiguez, and D. Vanderbilt, Appl. Phys. Lett. 90, 242918 (2007).CrossRefADSGoogle Scholar
  9. 9.
    M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D. A. Muller, L.-Q. Chen, J. Levy, and D. G. Schlom, Science (Washington) 324, 367 (2009).CrossRefADSGoogle Scholar
  10. 10.
    A. N. Morozovska, Y. Gu, V. V. Khist, M. D. Glinchuk, L.-Q. Chen, V. Gopalan, and E. A. Eliseev, Phys. Rev. B: Condens. Matter 87, 134102 (2013).CrossRefADSGoogle Scholar
  11. 11.
    J. C. Woicik, E. L. Shirley, C. S. Hellberg, K. E. Andersen, S. Sambasivan, D. A. Fischer, B. D. Chapman, E. A. Stern, P. Ryan, D. L. Ederer, and H. Li, Phys. Rev. B: Condens. Matter 75, 140103 (2007).CrossRefADSGoogle Scholar
  12. 12.
    H. Uwe and T. Sakudo, Phys. Rev. B: Solid State 13, 271 (1976).CrossRefADSGoogle Scholar
  13. 13.
    A. Antons, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B: Condens. Matter 71, 024102 (2005).CrossRefADSGoogle Scholar
  14. 14.
    O. Diéguez, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B: Condens. Matter 72, 144101 (2005).CrossRefADSGoogle Scholar
  15. 15.
    T. Hashimoto, T. Nishimatsu, H. Mizuseki, Y. Kawazoe, A. Sasaki, and Y. Ikeda, Jpn. J. Appl. Phys. 44, 7134 (2005).CrossRefADSGoogle Scholar
  16. 16.
    A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, Phys. Rev. Lett. 97, 257602 (2006).CrossRefADSGoogle Scholar
  17. 17.
    Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. Trolier-McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, Phys. Rev. B: Condens. Matter 73, 184112 (2006).CrossRefADSGoogle Scholar
  18. 18.
    C.-H. Lin, C.-M. Huang, and G. Y. Guo, J. Appl. Phys. 100, 084104 (2006).CrossRefADSGoogle Scholar
  19. 19.
    A. Vasudevarao, S. Denev, M. D. Biegalski, Y. Li, L.-Q. Chen, S. Trolier-McKinstry, D. G. Schlom, and V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008).CrossRefADSGoogle Scholar
  20. 20.
    M. D. Biegalski, E. Vlahos, G. Sheng, Y. L. Li, M. Bernhagen, P. Reiche, R. Uecker, S. K. Streiffer, L. Q. Chen, V. Gopalan, D. G. Schlom, and S. Trolier-McKinstry, Phys. Rev. B: Condens. Matter 79, 224117 (2009).CrossRefADSGoogle Scholar
  21. 21.
    V. B. Shirokov, Yu. I. Yuzyuk, and V. V. Lemanov, Phys. Solid State 51 (5), 1025 (2009).CrossRefADSGoogle Scholar
  22. 22.
    G. Sheng, Y. L. Li, J. X. Zhang, S. Choudhury, Q. X. Jia, V. Gopalan, D. G. Schlom, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 96, 232902 (2010).CrossRefADSGoogle Scholar
  23. 23.
    G. Sheng, Y. L. Li, J. X. Zhang, S. Choudhury, Q. X. Jia, V. Gopalan, D. G. Schlom, Z. K. Liu, and L. Q. Chen, J. Appl. Phys. 108, 084113 (2010).CrossRefADSGoogle Scholar
  24. 24.
    A. I. Lebedev, Phys. Solid State 51 (2), 362 (2009).CrossRefADSGoogle Scholar
  25. 25.
    C. LaSota, C.-Z. Wang, R. Yu, and H. Krakauer, Ferroelectrics 194, 109 (1997).CrossRefGoogle Scholar
  26. 26.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B: Condens. Matter 49, 5828 (1994).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations