Advertisement

Physics of the Solid State

, Volume 58, Issue 2, pp 309–314 | Cite as

Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

  • O. A. Ageev
  • Yu. F. Blinov
  • M. V. Il’ina
  • O. I. Il’in
  • V. A. Smirnov
  • O. G. Tsukanova
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70–120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

Keywords

Adhesion Strength Adhesion Force External Electric Field Detachment Force Align Carbon Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science (Washington) 339, 535 (2013).CrossRefADSGoogle Scholar
  2. 2.
    J. M. Bonard, H. Kind, T. Stockli, and L. O. Nilsson, Solid State Electron. 45, 893 (2001).CrossRefADSGoogle Scholar
  3. 3.
    Y. Wang and J. T. W. Yeow, J. Sens. 2009, 1 (2009).CrossRefGoogle Scholar
  4. 4.
    O. A. Ageev, Yu. F. Blinov, O. I. Il’in, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Phys. Solid State 57 (4), 825 (2015).CrossRefADSGoogle Scholar
  5. 5.
    H. Li, Ch. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron Devices 56 (9), 1799 (2009).CrossRefADSGoogle Scholar
  6. 6.
    M. Chhowalla, K. B. K. Teo, C. Ducati, and N. L. Rupesinghe, J. Appl. Phys. 90, 5308 (2001).CrossRefADSGoogle Scholar
  7. 7.
    O. A. Ageev, O. I. Il’in, V. S. Klimin, B. G. Konoplev, and A. A. Fedotov, Khim. Fiz. Mezoskopiya 13 (2), 226 (2011).Google Scholar
  8. 8.
    J. M. Bonard, C. Klinke, K. A. Dean, and B. F. Coll, Phys. Rev. B: Condens. Matter 67, 115406 (2003).CrossRefADSGoogle Scholar
  9. 9.
    H.-C. Su, C.-H. Chen, Y.-C. Chen, D.-J. Yao, H. Chen, Y.-C. Chang, and T.-R. Yew, Carbon 48, 805 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Dichiara, Y. Lin, D. He, and J. Bai, Sci. Adv. Mater. 6, 1 (2014).CrossRefGoogle Scholar
  11. 11.
    J.-H. Deng, P.-Ch. Sun, Z.-X. Ping, G.-A. Cheng, and R.-T. Zheng, Key Eng. Mater. 483, 589 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Xia and J. Liang, Mater. Res. Soc. Symp. Proc. 975, DD10–09 (2007).Google Scholar
  13. 13.
    I. Lahiri, D. Lahiri, S. Jin, A. Agarwal, and W. Choi, ACS Nano 5 (2), 780 (2011).CrossRefGoogle Scholar
  14. 14.
    O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Nanotechnol. Russ. 7, (1–2), 47 (2012).CrossRefGoogle Scholar
  15. 15.
    O. A. Ageev, O. I. Il’in, V. S. Klimin, M. V. Rubashkina, V. A. Smirnov, Yu. Syurik, and O. G. Tsukanova, Izv. Yuzhn. Fed. Univ., Tekh. Nauki 9, 58 (2014).Google Scholar
  16. 16.
    O. A. Ageev, Al. V. Bykov, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and O. G. Tsukanova, Izv. Vyssh. Uchebn. Zaved., Elektron. 20 (2), 127 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. A. Ageev
    • 1
  • Yu. F. Blinov
    • 1
  • M. V. Il’ina
    • 1
  • O. I. Il’in
    • 1
  • V. A. Smirnov
    • 1
  • O. G. Tsukanova
    • 1
  1. 1.Institute of Nanotechnologies, Electronics, and Electronic Equipment EngineeringSouthern Federal UniversityTaganrogRussia

Personalised recommendations