Advertisement

Physics of the Solid State

, Volume 58, Issue 1, pp 115–126 | Cite as

Effects of doping of lead titanate with alkaline-earth elements

  • L. A. Shilkina
  • L. A. Reznichenko
  • O. N. Razumovskaya
  • S. I. Dudkina
  • V. G. Vlasenko
  • S. I. Shevtsova
  • K. A. Guglev
  • A. T. Kozakov
  • A. V. Nikol’skii
Ferroelectricity
  • 49 Downloads

Abstract

Solid solutions of the (\(P{b_{1 - {\alpha _1} - {\alpha _2}}}S{r_{{\alpha _1}}}B{a_{{\alpha _2}}}\)) (0.02 ⩽ α1 ⩽ 0.36, 0.0073 ⩽ α2 ⩽ 0.1339) system with the ratio of Sr and Ba chosen so as to exclude the influence of the size factor on the lead titanate structure have been studied. The studies have been performed using X-ray powder diffraction (XRD), X-ray absorption spectroscopy (EXAFS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). It has been found that the removal of 2.5 at % Pb2+, which presumably occupy oxygen octahedra, from the solid solution leads to a partial relieving of the crystal lattice stress that is observed as the decrease in the parameter c, c/a, and the unit cell volume, with parameter a being unchanged. It has been shown that PbTiO3 contains up to 5 at % of Pb4+ ions at all the preparation conditions. The Sr and Ba atoms replace the Pb atoms in lead titanate in a narrow concentration range 0 < (α1 + α2) ⩽ 0.0273; at higher Sr and Ba concentrations, solid solutions SrPb x Ti1–x O3 → Sr1–y Ba y Pb x Ti1–x O3 are formed.

Keywords

Solid Solution Unit Cell Parameter Unit Cell Volume Coordination Shell Lead Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Dantsiger, O. N. Razumovskaya, L. A. Reznichenko, V. P. Sakhnenko, A. N. Klevtsov, S. I. Dudkina, L. A. Shilkina, N. V. Dergunova, and A. N. Rybyanets, Multicomponent Systems of Ferroelectric Complex Oxides: Physics, Crystal Chemistry, Technology. Aspects of the Design of Ferroelectric Piezoelectric Materials (Rostov State University, Rostov-on-Don, 2001–2002) [in Russian].Google Scholar
  2. 2.
    A. Ya. Dantsiger, O. N. Razumovskaya, L. A. Reznichenko, L. D. Grineva, R. U. Devlikanova, S. I. Dudkina, S. V. Gavrilyachenko, N. V. Dergunova, and A. N. Klevtsov, Highly Effective Piezoceramic Materials: A Handbook (Kniga, Rostov-on-Don, 1994) [in Russian].Google Scholar
  3. 3.
    E. I. Bondarenko, V. D. Komarov, L. A. Reznichenko, and V. A. Chernyshkov, Sov. Phys. Tech. Phys. 33 (9), 1071 (1988).Google Scholar
  4. 4.
    G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].Google Scholar
  5. 5.
    S. V. Titov, L. A. Shilkina, O. N. Razumovskaya, L. A. Reznichenko, V. G. Vlasenko, A. T. Shuvaev, S. I. Dudkina, and A. N. Klevtsov, Inorg. Mater. 37 (7), 718 (2001).CrossRefGoogle Scholar
  6. 6.
    L. A. Shilkina, S. I. Dudkina, I. N. Andryushina, L. A. Reznichenko, K. P. Andryushin, S. V. Titov, V. M. Shabanov, and O. N. Razumovskaya, Phys. Solid State 57 (4), 731 (2015).CrossRefADSGoogle Scholar
  7. 7.
    E. G. Fesenko, A. Ya. Dantsiger, and O. N. Razumovskaya, New Piezoelectric Materials (Rostov State University, Rostov-on-Don, 1983) [in Russian].Google Scholar
  8. 8.
    V. M. Talanov, L. A. Shilkina, I. A. Verbenko, and L. A. Reznichenko, J. Am. Ceram. Soc. 98 (3), 838 (2015).CrossRefGoogle Scholar
  9. 9.
    L. A. Reznichenko, V. A. Alyoshin, L. A. Shilkina, M. V. Talanov, and S. I. Dudkina, Ceram. Int. 40, 15089 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Halliyal, U. Kumar, R. E. Newnhem, and L. E. Cross, Am. Ceram. Soc. Bull. 66, 671 (1987).Google Scholar
  11. 11.
    B.-Y. Ahn, and N.-K. Kim, J. Am. Ceram. Soc. 83, 1720 (2000).CrossRefGoogle Scholar
  12. 12.
    L. A. Reznitchenko, I. A. Verbenko, O. N. Razumovskaya, L. A. Shilkina, A. A. Bokov, A. I. Miller, and M. V. Talanov, Ceram. Int. 38, 3835 (2012).CrossRefGoogle Scholar
  13. 13.
    B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971; Mir, Moscow, 1974).Google Scholar
  14. 14.
    S. H. Leal, J. C. Sczancoski, L. S. Cavalcante, M. T. Escote, J. M. E. Matos, M. R. M. C. Santos, F.M. Pontes, E. Longo, and J. A. Varela, J. Sol–Gel Sci. Technol. 53, 21 (2010).CrossRefGoogle Scholar
  15. 15.
    Hong Zhu, Zhijun Guo, Wein-Duo Yang, Wein-Feng Chang, and Cheng-Chin Wang, Ceram. Int. 37, 3203 (2011).CrossRefGoogle Scholar
  16. 16.
    M. Roy, Praniti Dave, Shiv Kumar Barbar, Sumit Jangid, D. M. Phase, and A. M. Awasthi, J. Therm. Anal. Calorim. 101, 833 (2010).CrossRefGoogle Scholar
  17. 17.
    Xianran Xing, Jinxia Deng, Zhenqi Zhu, and Guirong Liu, J. Alloys Compd. 353, 1 (2003).CrossRefGoogle Scholar
  18. 18.
    Xianran Xing, Jun Chen, Jinxia Deng, and Guirong Liu, J. Alloys Compd. 360, 286 (2003).CrossRefGoogle Scholar
  19. 19.
    Shou-Yi Kuo, Chung-Ting Li, and Wen-Feng Hsieha, Appl. Phys. Lett. 81 (16), 3019 (2002).CrossRefADSGoogle Scholar
  20. 20.
    P. P. Bardapurkar, N. P. Barde, D. P. Thakur, K. M. Jadhav, and G. K. Bichile, J. Electroceram. 29, 62 (2012).CrossRefGoogle Scholar
  21. 21.
    G. B. Bokii, Introduction to Crystal Chemistry (Moscow State University, Moscow, 1954) [in Russian].Google Scholar
  22. 22.
    R. D. Shennon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32 (5), 751 (1976).CrossRefADSGoogle Scholar
  23. 23.
    L. Eyraud, P. Eyraud, P. Connard, and M. Troccaz, Ferroelectrics 27, 103 (1980).CrossRefGoogle Scholar
  24. 24.
    E. G. Fesenko, The Family of Perovskite and Ferroelectricity (Atomizdat, Moscow, 1972) [in Russian].Google Scholar
  25. 25.
    L. A. Reznichenko, L. A. Shilkina, O. N. Razumovskaya, S. I. Dudkina, E. S. Gagarina, and A. V. Borodin, Inorg. Mater. 39 (2), 139 (2003).CrossRefGoogle Scholar
  26. 26.
    B. Ravel and M. Newville, J. Synchrotron Radiat. 12, 537 (2005).CrossRefGoogle Scholar
  27. 27.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B: Condens. Matter 58, 7565 (1998).CrossRefADSGoogle Scholar
  28. 28.
    A. M. Glazer and S. A. Mabud, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 1065 (1978).CrossRefGoogle Scholar
  29. 29.
    W. T. Fu and D. J. W. Ijdo, Solid State Commun. 95, 581 (1995).CrossRefADSGoogle Scholar
  30. 30.
    N. V. Dergunova, V. P. Sakhnenko, and E. G. Fesenko, Sov. Phys. Crystallogr. 23 (1), 50 (1978).Google Scholar
  31. 31.
    S. V. Senkevich, A. G. Kanareikin, E. Yu. Kaptelov, and I. P. Pronin, Izv. Ross. Gos. Pedagog. Univ. im. A. I. Gertsena, No. 157, 101 (2013).Google Scholar
  32. 32.
    D. Ehre, H. Cohen, V. Lyahovitskaya, A. Tagantsev, and I. Lubomirsky, Adv. Funct. Mater. 17, 1204 (2007).CrossRefGoogle Scholar
  33. 33.
    D. Ehre, H. Cohen, V. Lyahovitskaya, and I. Lubomirsky, Phys. Rev. B: Condens. Matter. 77, 184106 (2008).CrossRefADSGoogle Scholar
  34. 34.
    B. Chornik, V. A. Fuenzalida, C. R. Grahmann, and R. Labbe, Vacuum 48, 161 (1997).CrossRefGoogle Scholar
  35. 35.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin–Elmer, Eden Prairie, Minnesota, United States, 1992).Google Scholar
  36. 36.
    J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Phys. Chem. 2, 1319 (2000).Google Scholar
  37. 37.
    S. Kumar, V. S. Raju, and T. R. N. Kutty, Appl. Surf. Sci. 206, 250 (2003).CrossRefADSGoogle Scholar
  38. 38.
    A. T. Kozakov, A. G. Kochur, L. A. Reznichenko, L. A. Shilkina, A. V. Pavlenko, A. V. Nikolskii, K. A. Googlev, and V. G. Smotrakov, J. Electron Spectrosc. Relat. Phenom. 186, 14 (2013).CrossRefGoogle Scholar
  39. 39.
    A. T. Kozakov, K. A. Googlev, A. V. Nikolskii, Kh. A. Sadykov, I. A. Verbenko, A. V. Pavlenko, and L. A. Reznichenko, Bull. Russ. Acad. Sci.: Phys. 78 (8), 681 (2014).CrossRefGoogle Scholar
  40. 40.
    A. T. Kozakov, A. V. Nikol’skii, K. A. Guglev, and E. M. Panchenko, Bull. Russ. Acad. Sci.: Phys. 76 (1), 120 (2012).CrossRefGoogle Scholar
  41. 41.
    G. Frank, Ch. Ziegler, and W. Göpel, Phys. Rev. B: Condens. Matter 43, 2828 (1991).CrossRefADSGoogle Scholar
  42. 42.
    Yu. V. Blinova, M. V. Kuznetsov, V. R. Galakhov, S. V. Sudareva, T. P. Krinitsina, E. I. Kuznetsova, M. V. Degtyarev, O. V. Snigirev, and N. V. Porokhov, Phys. Solid State 56 (4), 659 (2014).CrossRefADSGoogle Scholar
  43. 43.
    V. I. Nefedov, X-Ray Photoelectron Spectroscopy of Chemical Compounds: A Reference Book (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  44. 44.
    D. Kumar, M. S. Chen, and D. W. Goodman, Thin Solid Films 515, 1475 (2006).CrossRefADSGoogle Scholar
  45. 45.
    A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1956; GIFML, Moscow, 1961) [in French and in Russian].Google Scholar
  46. 46.
    M. I. Sosulnikov and Yu. A. Teterin, J. Electron Spectrosc. Relat. Phenom. 59, 111 (1992).CrossRefGoogle Scholar
  47. 47.
    E. A. Chizhova and A. I. Klyndyuk, Glass Phys. Chem. 39 (4), 453 (2013).CrossRefGoogle Scholar
  48. 48.
    A. I. Lebedev, I. A. Sluchinskaya, A. Erko, A. A. Velikzhanin, and A. A. Chernyshov, Phys. Solid State 51 (5), 991 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. A. Shilkina
    • 1
  • L. A. Reznichenko
    • 1
  • O. N. Razumovskaya
    • 1
  • S. I. Dudkina
    • 1
  • V. G. Vlasenko
    • 1
  • S. I. Shevtsova
    • 1
  • K. A. Guglev
    • 1
  • A. T. Kozakov
    • 1
  • A. V. Nikol’skii
    • 1
  1. 1.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations