Physics of the Solid State

, Volume 58, Issue 1, pp 208–214 | Cite as

Thermal conductivity of partially graphitized biocarbon obtained by carbonization of medium-density fiberboard in the presence of a Ni-based catalyst

  • T. S. Orlova
  • L. S. Parfen’eva
  • B. I. Smirnov
  • A. Gutierrez-Pardo
  • J. Ramirez-Rico
Thermal Properties

Abstract

The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ∼ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ∼ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ∼10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40‒300 K is characterized by the dependence, k(T) ∼ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18 (14), 1961 (1998).CrossRefGoogle Scholar
  2. 2.
    P. Greil, J. Eur. Ceram. Soc. 21 (2), 105 (2001).CrossRefGoogle Scholar
  3. 3.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428 (1–2), 225 (2006).CrossRefGoogle Scholar
  4. 4.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1 (1), 56 (2004).CrossRefGoogle Scholar
  5. 5.
    F. M. Varela-Feria, J. Martinez-Fernandez, A. R. de Arellano-Lopez, and M. Singh, J. Eur. Ceram. Soc. 22 (14–15), 2719 (2002).CrossRefGoogle Scholar
  6. 6.
    C. E. Byrne and D. C. Nagle, Carbon 35 (2), 259 (1997).CrossRefGoogle Scholar
  7. 7.
    J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, Carbon 38 (7), 953 (2000).CrossRefGoogle Scholar
  8. 8.
    D. Gaies and K. T. Faber, Carbon 40 (7), 1137 (2002).CrossRefGoogle Scholar
  9. 9.
    R. E. Franklin, Acta Crystallogr. 4 (5), 235 (1951).Google Scholar
  10. 10.
    C. E. Byrne and D. C. Nagle, Carbon 35 (2), 267 (1997).CrossRefGoogle Scholar
  11. 11.
    H. M. Cheng, H. Endo, T. Okabe, K. Saito, and G. B. Zheng, J. Porous Mater. 6 (3), 233 (1999).CrossRefGoogle Scholar
  12. 12.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48 (3), 441 (2006).CrossRefADSGoogle Scholar
  13. 13.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50 (12), 2245 (2008).CrossRefADSGoogle Scholar
  14. 14.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51 (10), 2023 (2009).CrossRefADSGoogle Scholar
  15. 15.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).CrossRefADSGoogle Scholar
  16. 16.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, and M. C. Vera, Phys. Solid State 53 (11), 2398 (2011).CrossRefADSGoogle Scholar
  17. 17.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, and J. Ramirez-Rico, Phys. Solid State 56 (5), 1071 (2014).CrossRefADSGoogle Scholar
  18. 18.
    N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56 (11), 2348 (2014).CrossRefADSGoogle Scholar
  19. 19.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26 (1), 18 (2011).CrossRefADSGoogle Scholar
  20. 20.
    M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).CrossRefGoogle Scholar
  21. 21.
    A. Gutierrez-Pardo, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, J. Mater. Sci. 49, 22 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas-Rodriguez, and J. Martinez-Fernandez, J. Power Sources 278, 18 (2015).CrossRefADSGoogle Scholar
  23. 23.
    T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).CrossRefADSGoogle Scholar
  24. 24.
    V. V. Shpeizman, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Mater. Phys. Mech. 21, 200 (2014).Google Scholar
  25. 25.
    V. V. Popov, T. S. Orlova, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 57 (9), 1746 (2015).CrossRefADSGoogle Scholar
  26. 26.
    A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).CrossRefADSGoogle Scholar
  27. 27.
    A. L. Love, J. Appl. Phys. 22, 252 (1951).ADSGoogle Scholar
  28. 28.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51 (11), 2247 (2009).CrossRefADSGoogle Scholar
  29. 29.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53 (2), 276 (2011).CrossRefADSGoogle Scholar
  30. 30.
    E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).Google Scholar
  31. 31.
    A. A. Balandin, Nat. Mater. 10, 569 (2011).CrossRefADSGoogle Scholar
  32. 32.
    A. J. Bullen, K. E. O’Hara, and D. G. Cahill, J. Appl. Phys. 88, 6317 (2000).CrossRefADSGoogle Scholar
  33. 33.
    D. T. Morelli and G. A. Slack, in High Thermal Conductivity Materials, Ed. by S. L. Shinde and J. S. Goela (Springer-Verlag, New York, 2006), p. 37.Google Scholar
  34. 34.
    N. C. Gallego and J. W. Klett, Carbon 41, 1461 (2003).CrossRefGoogle Scholar
  35. 35.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. S. Orlova
    • 1
    • 2
  • L. S. Parfen’eva
    • 1
  • B. I. Smirnov
    • 1
  • A. Gutierrez-Pardo
    • 3
  • J. Ramirez-Rico
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Sevilla (ICMS)Universidad de SevillaSevillaSpain

Personalised recommendations