Advertisement

Physics of the Solid State

, Volume 58, Issue 1, pp 37–41 | Cite as

Low-temperature spray-pyrolysis of FeS2 films and their electrical and optical properties

  • I. G. OrletskiiEmail author
  • P. D. Mar’yanchuk
  • E. V. Maistruk
  • M. N. Solovan
  • V. V. Brus
Semiconductors

Abstract

Iron disulfide (FeS2) films with a wide range of electrical resistivities 100 Ω cm ⩽ ρ ⩽ 800 kΩ cm, a high adhesion to the substrate, and a resistance to aggressive media have been prepared by the spray pyrolysis of aqueous solutions of the salts FeCl3 · 6H2O and (NH2)2CS at low temperatures in the range 250°C ⩽ T S ⩽ 400°C. It has been found that the FeS2 films have a high transmittance T ≈ 60–70% and are characterized by a sharp transmission edge. It has been shown that the optical band gap for direct (E g op = 2.19–2.78 eV) and indirect (E g ′op = 1.26–1.36 eV) optical transitions depends on the conditions of film preparation.

Keywords

Pyrolysis Electrical Resistivity Spray Pyrolysis Pyrolysis Temperature High Sulfur Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Rezig, H. Dahman, and M. Kenzari, Renewable Energy 2, 125 (1992).CrossRefGoogle Scholar
  2. 2.
    J. Hu, Y. Zhang, M. Law, and R. Wu, J. Am. Chem. Soc. 134, 13216 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Xiao, X.-L. Fan, L. M. Liu, and W.-M. Lau, Phys. Chem. Chem. Phys. 16, 24466 (2014).CrossRefGoogle Scholar
  4. 4.
    A. K. Abass, Z. A. Ahmed, and R. E. Tahir, Phys. Status Solidi A 97, 243 (1986).CrossRefADSGoogle Scholar
  5. 5.
    P. P. Altermatt, T. Kiesewetter, K. Ellmer, and H. Tributsch, Sol. Energy Mater. Sol. Cells 71, 181 (2002).CrossRefGoogle Scholar
  6. 6.
    S. Middya, A. Layek, A. Dey, and P. P. Ray, J. Mater. Sci. Technol. 30, 770 (2014).CrossRefGoogle Scholar
  7. 7.
    A. K. Ratui, L. Ndjeli, and K. Rabah, Renewable Energy 11, 191 (1997).CrossRefGoogle Scholar
  8. 8.
    A. K. Abass, Z. A. Ahmed, and R. M. Samuel, Phys. Status Solidi A 120, 247 (1990).CrossRefADSGoogle Scholar
  9. 9.
    D. Y. Wan, Y. T. Wang, B. Y. Wang, C. X. Ma, H. Sun, and L. Wei, Cryst. Growth 253, 230 (2003).CrossRefADSGoogle Scholar
  10. 10.
    V. V. Brus, M. N. Solovan, E. V. Maistruk, I. P. Kozyarskii, P. D. Maryanchuk, K. S. Ul’yanitskii, and J. Rappich, Phys. Solid State 56 (10), 1947 (2014).CrossRefGoogle Scholar
  11. 11.
    M. N. Solovan, V. V. Brus, P. D. Maryanchuk, T. T. Kovalyuk, J. Rappich, and M. Gluba, Phys. Solid State 55 (11), 2234 (2013).CrossRefADSGoogle Scholar
  12. 12.
    B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessaïs, and H. Ezzaouia, Mater. Charact. 54, 431 (2005).CrossRefGoogle Scholar
  13. 13.
    Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].Google Scholar
  14. 14.
    M. N. Solovan, V. V. Brus, E. V. Maistruk, and P. D. Maryanchuk, Inorg. Mater. 50 (1), 40 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. G. Orletskii
    • 1
    Email author
  • P. D. Mar’yanchuk
    • 1
  • E. V. Maistruk
    • 1
  • M. N. Solovan
    • 1
  • V. V. Brus
    • 1
    • 2
  1. 1.Fedkovych National University of ChernivtsiChernivtsiUkraine
  2. 2.University of CaliforniaSanta BarbaraUSA

Personalised recommendations