Advertisement

Physics of the Solid State

, Volume 58, Issue 1, pp 81–85 | Cite as

Experimental simulation of a magnetic refrigeration cycle in high magnetic fields

  • E. T. Dilmieva
  • A. P. Kamantsev
  • V. V. Koledov
  • A. V. Mashirov
  • V. G. Shavrov
  • J. Cwik
  • I. S. Tereshina
Magnetism

Abstract

The complete magnetic refrigeration cycle has been simulated on a sample of gadolinium in magnetic fields of a Bitter coil magnet up to 12 T. The total change of temperature of the sample during the cycle is a consequence of magnetic refrigeration, and the dependence of the magnetization of the sample on the magnetic field exhibits a hysteretic behavior. This makes it possible to determine the work done by the magnetic field on the sample during the magnetic refrigeration cycle and to calculate the coefficient of performance of the process. In a magnetic field of 2 T near the Curie temperature of gadolinium, the coefficient of performance of the magnetic refrigeration is found to be 92. With an increase in the magnetic field, the coefficient of performance of the process decreases sharply down to 15 in a magnetic field of 12 T. The reasons, for which the coefficient of performance of the magnetic refrigeration is significantly below the fundamental limitations imposed by the reversed Carnot theorem, have been discussed.

Keywords

Magnetic Field Magnetocaloric Effect Hysteretic Behavior Hall Sensor Refrigeration Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, V. D. Buchel’nikov, I. E. Dikshtein, S. M. Seletskii, and V. G. Shavrov, JETP Lett. 67 (3), 227 (1998).CrossRefADSGoogle Scholar
  2. 2.
    I. Dikshtein, A. Tulaikova, V. Koledov, V. Shavrov, A. Cherechukin, V. Buchelnikov, V. Khovailo, M. Matsumoto, T. Takagi, and J. Tani, IEEE Trans. Magn. 35 (5), 3811 (1999).CrossRefADSGoogle Scholar
  3. 3.
    V. Buchelnikov, I. Dikshtein, T. Khudoverdyan, V. Koledov, Y. Kuzavko, V. Shavrov, R. Grechishkin, I. Nazarkin, and T. Takagi, J. Magn. Magn. Mater. 2272–76, 2025 (2004).CrossRefGoogle Scholar
  4. 4.
    N. I. Kourov, A. V. Korolev, V. G. Pushin, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo, Phys. Met. Metallogr. 99 (4), 376 (2005).Google Scholar
  5. 5.
    V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, Int. J. Appl. Electromagn. Mech. 23 (1–2), 65 (2006).Google Scholar
  6. 6.
    A. M. Aliev, A. B. Batdalov, I. K. Kamilov, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, J. García, V. M. Prida, and B. Hernando, Appl. Phys. Lett. 97, 212505 (2010).CrossRefADSGoogle Scholar
  7. 7.
    X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).CrossRefADSGoogle Scholar
  8. 8.
    K. G. Sandeman, Scr. Mater. 67, 566 (2012).CrossRefGoogle Scholar
  9. 9.
    K. A. Gschneidner and V. K. Pecharsky, Int. J. Refrig. 31 (6), 945 (2008).CrossRefGoogle Scholar
  10. 10.
    A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (Institute of Physics, Bristol, The United Kingdom, 2003).CrossRefGoogle Scholar
  11. 11.
    S. Yu. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, Phys. Rev. B: Condens. Matter 57, 3478 (1998).CrossRefADSGoogle Scholar
  12. 12.
    G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, Appl. Phys. Lett. 104, 242402 (2014).CrossRefADSGoogle Scholar
  13. 13.
    A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, and I. S. Tereshina, Solid State Phenom. 215, 113 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Kamantsev, V. Koledov, E. Dilmieva, A. Mashirov, V. Shavrov, J. Cwik, I. Tereshina, V. Khovaylo, M. Lyange, L. Gonzalez-Legarreta, B. Hernando, and P. Ari-Gur, Eur. Phys. J. Web Conf. 75, 04008 (2014).CrossRefGoogle Scholar
  15. 15.
    A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dil’mieva, V. G. Shavrov, J. Cwik, and I. S. Tereshina, Bull. Russ. Acad. Sci.: Phys. 78 (9), 936 (2014).CrossRefGoogle Scholar
  16. 16.
    A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, J. Appl. Phys. 117 (16), 163903 (2015).CrossRefADSGoogle Scholar
  17. 17.
    A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, and I. S. Tereshina, Solid State Phenom. 233–234, 216 (2015).CrossRefGoogle Scholar
  18. 18.
    F. Philippe, J. Arnaud, and L. Chusseau, Am. J. Phys. 78 (1), 106 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. T. Dilmieva
    • 1
  • A. P. Kamantsev
    • 1
    • 2
  • V. V. Koledov
    • 1
    • 2
  • A. V. Mashirov
    • 1
    • 2
  • V. G. Shavrov
    • 1
  • J. Cwik
    • 1
    • 2
  • I. S. Tereshina
    • 2
    • 3
  1. 1.Kotelnikov Institute of Radio-Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.International Laboratory of High Magnetic Fields and Low TemperaturesWroclawPoland
  3. 3.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations