Physics of the Solid State

, Volume 58, Issue 1, pp 76–80 | Cite as

Mössbauer study of the iron atom state in modified chromium dioxide

  • S. I. Bondarevskii
  • V. V. EreminEmail author
  • V. V. Panchuk
  • V. G. Semenov
  • M. G. Osmolovsky


Powders of modified chromium dioxide produced by the hydrothermal method were studied using 57Fe Mössbauer spectroscopy at a temperature of 298 K. The content of the modifier, i.e., 57Fe compound, was varied from 2 to 10 mmol/mol Cr at a Sb content of 2.2 and 10 mmol/mol Cr. It was shown that, independently of concentrations, Fe3+ ions are distributed between three magnetic solid solutions (sextets): based on CrO2 (bulk material and iron-enriched surface layer), based on Cr2O3, and surface β-CrOOH (doublet). In this case, chromium atoms were not substituted in the CrSbO4 nucleation (12 nm in size) phase with an accuracy up to the Mössbauer factor. It was assumed that the powder coercivity, in addition to the size factor, is controlled by the iron concentration in the CrO2 surface layer.


Iron Atom Isomer Shift Quadrupole Splitting Chromic Anhydride Chromium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ensling, Ph. Gütlich, R. Klinger, W. Maisel, H. Jachow, and E. Schwab, Hyperfine Interact. 111, 143 (1998).CrossRefADSGoogle Scholar
  2. 2.
    K. Schwars, J. Phys. F: Met. Phys. 16 (9), 211 (1986).CrossRefADSGoogle Scholar
  3. 3.
    B. I. Belevtsev, N. V. Dalakona, M. G. Osmolowsky, E. Yu. Beliayev, and A. A. Selutin, J. Alloys Compd. 479 (1–2), 11 (2009).CrossRefGoogle Scholar
  4. 4.
    G. M. Müller, J. Walowski, M. Djordjevic, G.-X. Miao, A. Gupta, A. V. Ramos, K. Gerhke, V. Moshnyaga, K. Samwer, J. Schmalhorst, A. Thomas, A. Hütten, G. Reiss, J.S. Moodera, and M. Münzenberg, Nat. Mater. 8, 56 (2009).CrossRefADSGoogle Scholar
  5. 5.
    R. S. Keizer, S. N. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, Nature (London) 439, 825 (2006).CrossRefADSGoogle Scholar
  6. 6.
    M. Amemiya, S. Asada, and Y. Ishinose, J. Can. Ceram. Soc. 42, 45 (1973).Google Scholar
  7. 7.
    T. Mihara, T. Kawamoto, Y. Terada, and E. Hirota, in Ferrites: Proceedings of the International Conference on Ferrites, Ed. by Y. Hoshino (University Park Press, Baltimore, Maryland, United States, 1971), p. 476.Google Scholar
  8. 8.
    M. G. Osmolovskii, I. I. Kozhina, L. Yu. Ivanova, and O. L. Baidakova, Russ. J. Appl. Chem. 74 (1), 1 (2001).CrossRefGoogle Scholar
  9. 9.
    O. M. Osmolovskaya, D. I. Arkhipov, S. V. Gordeev, E. L. Dzidziguri, and M. G. Osmolovskii, Russ. J. Gen. Chem. 85 (4), 984 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Rabe, J. Dreßen, D. Dahmen, J. Pommer, H. Stahl, U. Rüdiger, G. Güntherodt, S. Senz, and D. Hesse, J. Magn. Magn. Mater. 211, 314 (2000).CrossRefADSGoogle Scholar
  11. 11.
    M. G. Osmolowsky, O. K. Bondarenko, S. V. Gordeev, A. Yu. Otkupshchikov, S. I. Korolev, and A. I. Kobelev, Bull. Russ. Acad. Sci.: Phys. 72 (8), 1103 (2008).CrossRefGoogle Scholar
  12. 12.
    Patent EP-A 0548642. BASF (1993).Google Scholar
  13. 13.
    M. G. Osmolovskii, L. Yu. Ivanova, S. M. Koz’mina, S. A. Borshchevskii, A. V. Pererva, E. A. Voroshilo, and E. A. Kuzheleva, RF Patent No. 2022718, Byul. Izobret., No. 21 (1994).Google Scholar
  14. 14.
    Y. Shibasaki, F. Kanamura, and M. Koizumi, Mater. Res. Bull. 8, 559 (1973).CrossRefGoogle Scholar
  15. 15.
    A. N. Christensen, Acta Chem. Scand., Ser. A 30 (2), 133 (1976).CrossRefGoogle Scholar
  16. 16.
    M. Essig, M. W. Müller, and E. Schwab, IEEE Trans. Magn. 26 (1), 69 (1990).CrossRefADSGoogle Scholar
  17. 17.
    V. G. Semenov, L. N. Moskvin, and A. A. Efimov, Usp. Khim. 75 (4), 354 (2006).CrossRefGoogle Scholar
  18. 18.
    T. Shinjo, T. Takada, and N. Tamagawa, J. Phys. Soc. Jpn. 26 (6), 1404 (1969).CrossRefADSGoogle Scholar
  19. 19.
    K. Haneda, H. Kojima, A. H. Morrish, P. J. Picone, and K. Wakai, J. Appl. Phys. 53 (3), 2686 (1982).CrossRefADSGoogle Scholar
  20. 20.
    R. C. Maisenheimer and I. D. Swalen, Phys. Rev. 123, 831 (1961).CrossRefADSGoogle Scholar
  21. 21.
    F. J. Berry and M. I. Sarson, Polyhedron 12 (13), 1581 (1993).CrossRefGoogle Scholar
  22. 22.
    R. Klinger, J. Ensling, H. Jachow, W. Meisel, E. Schwab, and P. Gütlich, J. Magn. Magn. Mater. 150, 277 (1995).CrossRefADSGoogle Scholar
  23. 23.
    R. Keller and E. Schmidbauer, J. Magn. Magn. Mater. 187, 160 (1998).CrossRefADSGoogle Scholar
  24. 24.
    A. A. Selyutin, M. G. Osmolovskii, O. K. Bondarenko, N. P. Bobrysheva, and A. I. Veinger, Izv. Akad. Nauk, Ser. Fiz. 70 (7), 1008 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. I. Bondarevskii
    • 1
  • V. V. Eremin
    • 2
    Email author
  • V. V. Panchuk
    • 2
  • V. G. Semenov
    • 2
  • M. G. Osmolovsky
    • 2
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Saint Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations