Physics of the Solid State

, Volume 57, Issue 12, pp 2494–2501 | Cite as

Optical properties of woodpile photonic crystals produced by three-dimensional laser lithography

  • K. B. Samusev
  • M. V. Rybin
  • A. K. Samusev
  • M. F. Limonov
Optical Properties

Abstract

Photonic crystals having a woodpile lattice structure with the lateral sizes of up to 200 × 200 μm and lattice period of 1 to 2 μm have been produced by additive three-dimensional laser lithography. The sample structure has been analyzed by optical and scanning electron microscopy. The ideal woodpile consists of “logs” with a rectangular cross section but, in the synthesized structures, the angles are rounded. Calculations of the photonic band structure of woodpiles, in which the cross sections of logs are specified by the Lame curves, have made it possible to estimate the influence of the rounding on the optical properties. Due to significant sample sizes, patterns of optical diffraction in white and monochromatic light have been studied experimentally. The experimental results have been interpreted using calculations of diffraction patterns in the Born approximation of scattering theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature (London) 412, 697 (2001).CrossRefADSGoogle Scholar
  2. 2.
    M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).CrossRefADSGoogle Scholar
  3. 3.
    W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, Opt. Express 15, 3426 (2007).CrossRefADSGoogle Scholar
  4. 4.
    M. Göppert-Mayer, Ann. Phys. 401, 273 (1931).CrossRefGoogle Scholar
  5. 5.
    K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, Adv. Mater. (Weinheim) 17, 541 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, Adv. Mater. (Weinheim) 19, 207 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Maruo, K. Ikuta, and H. Korogi, J. Micromech. Syst. 12, 7 (2003).CrossRefGoogle Scholar
  8. 8.
    D. Wu, Q. D. Chen, L. G. Niu, J. N. Wang, J. Wang, and R. Wang, Lab Chip 9, 2391 (2009).CrossRefGoogle Scholar
  9. 9.
    X. Z. Dong, Z. S. Zhao, and X. M. Duan, Appl. Phys. Lett. 91, 124103 (2007).CrossRefADSGoogle Scholar
  10. 10.
    C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, Int. J. Adv. Manuf. Technol. 48, 435 (2010).CrossRefGoogle Scholar
  11. 11.
    I. I. Shishkin, M. V. Rybin, K. B. Samusev, M. F. Limonov, R. V. Kiyan, B. N. Chichkov, Yu. S. Kivshar’, and P. A. Belov, JETP Lett. 99 (9), 531 (2014).CrossRefADSGoogle Scholar
  12. 12.
    I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, R. V. Kiyan, B. N. Chichkov, Yu. S. Kivshar’, and P. A. Belov, Phys. Solid State 56 (11), 2166 (2014).CrossRefADSGoogle Scholar
  13. 13.
    M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994).CrossRefADSGoogle Scholar
  14. 14.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, United States, 2008).Google Scholar
  15. 15.
    M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Yu. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, Crystals 5, 61 (2015).CrossRefGoogle Scholar
  16. 16.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).CrossRefADSGoogle Scholar
  17. 17.
    D. S. Watkins, Fundamentals of Matrix Computations (Wiley, New York, 2002).CrossRefMATHGoogle Scholar
  18. 18.
    R. D. Meade, A. M. Rappe, K. D. Brommer, T. D. Toannopoulos, and O. L. Alerhand, Phys. Rev. B: Condens. Matter 48, 8434 (1993).CrossRefADSGoogle Scholar
  19. 19.
    S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).CrossRefADSGoogle Scholar
  20. 20.
    A. K. Samusev, K. B. Samusev, M. V. Rybin, M. F. Limonov, E. Yu. Trofimova, D. A. Kurdyukov, and V. G. Golubev, Phys. Solid State 53 (5), 1056 (2011).CrossRefADSGoogle Scholar
  21. 21.
    A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, Phys. Solid State 46 (7), 1331 (2004).CrossRefADSGoogle Scholar
  22. 22.
    M. V. Rybin, I. S. Sinev, A. K. Samusev, K. B. Samusev, E. Yu. Trofimova, D. A. Kurdyukov, V. G. Golubev, and M. F. Limonov, Phys. Rev. B: Condens. Matter 87, 125131 (2013).CrossRefADSGoogle Scholar
  23. 23.
    J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979).Google Scholar
  24. 24.
    A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, New York, 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. B. Samusev
    • 1
    • 2
  • M. V. Rybin
    • 1
    • 2
  • A. K. Samusev
    • 1
    • 2
  • M. F. Limonov
    • 1
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations