Advertisement

Physics of the Solid State

, Volume 57, Issue 12, pp 2562–2569 | Cite as

Effect of hydrogen adsorption on the formation and annealing of Stone–Wales defects in graphene

  • A. I. Podlivaev
  • L. A. Openov
Graphenes

Abstract

The heights of energy barriers preventing the formation and annealing of Stone–Wales defects in graphene with a hydrogen atom adsorbed on the defect or in its immediate vicinity have been calculated using the atomistic computer simulation. It has been shown that, in the presence of hydrogen, both barriers are significantly lower than those in the absence of hydrogen. Based on the analysis of the potential energy surface, the frequency factors have been calculated for two different paths of the Stone–Wales transformation, and the temperature dependences of the corresponding annealing times of the defects have been found. The results obtained have been compared with the first-principles calculations and molecular dynamics data.

Keywords

Hydrogen Atom Energy Barrier Annealing Time Potential Energy Surface Adsorption Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors (Nauka, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  3. 3.
    D. Saint-James, G. Sarma, and E. J. Thomas, Type II Superconductivity (Pergamon, London, 1969; Mir, Moscow, 1970).Google Scholar
  4. 4.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).CrossRefADSGoogle Scholar
  5. 5.
    G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, Nat. Phys. 11, 26 (2015).CrossRefGoogle Scholar
  6. 6.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).CrossRefADSGoogle Scholar
  7. 7.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).CrossRefADSGoogle Scholar
  8. 8.
    X. Peng and R. Ahuja, Nano Lett. 8, 4464 (2008).CrossRefADSGoogle Scholar
  9. 9.
    E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 61, 2693 (1988).CrossRefADSGoogle Scholar
  10. 10.
    L. Li, S. Reich, and J. Robertson, Phys. Rev. B: Condens. Matter 72, 184109 (2005).CrossRefADSGoogle Scholar
  11. 11.
    A. I. Podlivaev and L. A. Openov, Phys. Lett. A 379, 1757 (2015).CrossRefADSGoogle Scholar
  12. 12.
    J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).CrossRefADSGoogle Scholar
  13. 13.
    A. I. Podlivaev and L. A. Openov, Phys. Solid State 57 (4), 820 (2015).CrossRefADSGoogle Scholar
  14. 14.
    T. Dumitric and B. I. Yakobson, Appl. Phys. Lett. 84, 2775 (2004).CrossRefADSGoogle Scholar
  15. 15.
    A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).CrossRefADSGoogle Scholar
  16. 16.
    L. Pauling, The Nature of the Chemical Bond (Cornell University Press, New York, 1939; Goskhimizdat, Moscow, 1947).Google Scholar
  17. 17.
    A. A. Dzhurakhalov and F. M. Peeters, Carbon 49, 3258 (2011).CrossRefGoogle Scholar
  18. 18.
    Thermodynamic Properties of Individual Substances: A Reference Book, Ed. by V. P. Glushko (Nauka, Moscow, 1979), Vol. II, Book 1 [in Russian].Google Scholar
  19. 19.
    L. A. Girifalco and R. A. Lad, J. Chem. Phys. 25, 693 (1956).CrossRefADSGoogle Scholar
  20. 20.
    J. Ma, D. Alfé, A. Michaelides, and E. Wang, Phys. Rev. B: Condens. Matter 80, 033407 (2009).CrossRefADSGoogle Scholar
  21. 21.
    L. A. Openov and A. I. Podlivaev, Physica E (Amsterdam) 70, 165 (2015).CrossRefADSGoogle Scholar
  22. 22.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 57 (7), 1477 (2015).CrossRefADSGoogle Scholar
  23. 23.
    A. I. Podlivaev and L. A. Openov, JETP Lett. 101 (3), 173 (2015).CrossRefADSGoogle Scholar
  24. 24.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).CrossRefADSGoogle Scholar
  25. 25.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51 (3), 645 (2009).CrossRefADSGoogle Scholar
  26. 26.
    X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zuang, and X.-J. Ning, J. Chem. Phys. 132, 064103 (2010).CrossRefADSGoogle Scholar
  27. 27.
    S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, and K. P. Katin, Phys. Solid State 57 (5), 1023 (2015).CrossRefADSGoogle Scholar
  28. 28.
    J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, J. Phys. Chem. 87, 2745 (1983).CrossRefGoogle Scholar
  29. 29.
    M. J. D. Powell, Math. Prog. 1, 26 (1971).CrossRefMATHGoogle Scholar
  30. 30.
    D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B: Condens. Matter 77, 035427 (2008).CrossRefADSGoogle Scholar
  31. 31.
    S. Letardi, M. Gelino, F. Cleri, and V. Rosato, Surf. Sci. 496, 33 (2002).CrossRefADSGoogle Scholar
  32. 32.
    L. Chen, J. Li, D. Li, M. Wei, and X. Wang, Solid State Commun. 152, 1985 (2012).CrossRefADSGoogle Scholar
  33. 33.
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).CrossRefADSGoogle Scholar
  34. 34.
    T. C. Fitzgibbons, M. Guthrie, E. Xu, V. H. Crespi, S. K. Davidowski, G. D. Cody, N. Alem, and J. V. Badding, Nat. Mater. 14, 43 (2015).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia
  2. 2.Research Institute for the Development of Scientific and Educational Potential of YouthMoscowRussia

Personalised recommendations