Physics of the Solid State

, Volume 57, Issue 12, pp 2479–2488 | Cite as

Resonances in the generalized LC model of granular metal–dielectric nanocomposites

Optical Properties


LC networks in the form of spatial lattices with randomly arranged inductive and capacitive bonds, which serve as an adequate theoretical model for describing plasmon resonances in disordered granular metal–dielectric composites, have been considered. Earlier, such networks were theoretically studied only in the case when the values of all L- and C-bonds were equal. This approximation is not applicable when the sizes of metallic granules and dielectric gaps between them appreciably fluctuate. In the present work, a generalized model making it possible to consider networks with arbitrary values of L and C is developed. Using this generalized model, the spectral density of resonant states for networks with different values of inductive and capacitive bonds is studied. It is shown that, in the case of a discrete set of values of L- and/or C-bonds, the typical peaks in the density of states are split and, in the case of a continuous distribution of these values, they are smoothened. Anticrossing of frequencies due to dipole–dipole interaction of single resonant clusters is studied, and a logarithmic singularity in the spectral state density at the ends of the spectrum for smooth distributions of L and C is found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. I. Stockman, Phys. Today 64, 39 (2011).CrossRefGoogle Scholar
  2. 2.
    V. M. Shalaev, Phys. Rep. 272, 61 (1996).CrossRefADSGoogle Scholar
  3. 3.
    P. Gadenne, Y. Yagil, and G. Deutcher, J. Appl. Phys. 66, 3019 (1989).CrossRefADSGoogle Scholar
  4. 4.
    A. K. Sarychev and V. M. Shalaev, Phys. Rep. 335, 275 (2000).CrossRefADSGoogle Scholar
  5. 5.
    J. P. Clerc, G. Giraud, J. M. Luck, and Th. Robin, J. Phys. A: Math. Gen. 29, 4781 (1996).CrossRefADSMathSciNetMATHGoogle Scholar
  6. 6.
    Th. Jonckheere and J. M. Luck, J. Phys. A: Math. Gen. 31, 3687 (1998).CrossRefADSMATHGoogle Scholar
  7. 7.
    Yan V. Fyodorov, J. Phys. A: Math. Gen. 32, 7429 (1999).CrossRefADSMathSciNetMATHGoogle Scholar
  8. 8.
    Yan V. Fyodorov, Physica E (Amsterdam) 9, 609 (2001).CrossRefADSGoogle Scholar
  9. 9.
    J. Stäring, B. Mehlig, Yan V. Fyodorov, and J. M. Luck, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 047101 (2003).CrossRefADSGoogle Scholar
  10. 10.
    L. Raymond, J. M. Laugier, S. Schafer, and G. Albinet, Eur. Phys. J. B 31, 355 (2003).CrossRefADSGoogle Scholar
  11. 11.
    S. Schafer, L. Raymond, and G. Albinet, Eur. Phys. J. B 43, 81 (2005).CrossRefADSGoogle Scholar
  12. 12.
    C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2006).Google Scholar
  13. 13.
    Y. Gu, K. W. Yu, and Z. R. Yang, Phys. Rev. B: Condens. Matter 66, 012202 (2002).CrossRefADSGoogle Scholar
  14. 14.
    E. F. Shender, J. Phys. C: Solid State Phys. 11, L423 (1978).CrossRefADSGoogle Scholar
  15. 15.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).CrossRefADSGoogle Scholar
  16. 16.
    J. T. Chalker, T. S. Pickles, and Pragya Shukla, Phys. Rev. B: Condens. Matter 82, 104209 (2010).CrossRefADSGoogle Scholar
  17. 17.
    X. C. Zeng, P. M. Hui, and D. Stroud, Phys. Rev. B: Condens. Matter 39, 1063 (1989).CrossRefADSGoogle Scholar
  18. 18.
    J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005).CrossRefADSGoogle Scholar
  19. 19.
    L. S. Levitov, Europhys. Lett. 9, 83 (1989).CrossRefADSGoogle Scholar
  20. 20.
    D. A. Parshin and H. R. Schober, Phys. Rev. B: Condens. Matter 57, 10232 (1998).CrossRefADSGoogle Scholar
  21. 21.
    A. M. Dykhne, Sov. Phys. JETP 32, 63 (1970).ADSGoogle Scholar
  22. 22.
    J. P. Straley, Phys. Rev. B: Solid State 15, 5733 (1977).CrossRefADSGoogle Scholar
  23. 23.
    F. J. Dyson, Phys. Rev. 92, 1331 (1953).CrossRefADSMathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. A. Olekhno
    • 1
    • 2
  • Ya. M. Beltukov
    • 2
    • 3
  • D. A. Parshin
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Université Montpellier IICNRSMontpellierFrance

Personalised recommendations