Physics of the Solid State

, Volume 57, Issue 11, pp 2342–2347 | Cite as

Synthesis of graphene through the carbidization of Gd on pyrolytic graphite

  • V. O. Shevelev
  • E. V. Zhizhin
  • D. A. Pudikov
  • I. I. Klimovskikh
  • A. G. Rybkin
  • V. Yu. Voroshnin
  • A. E. Petukhov
  • G. G. Vladimirov
  • A. M. Shikin


The formation of graphene on the surface of a Gd film on a highly oriented pyrolytic graphite substrate has been studied by photoelectron spectroscopy using synchrotron radiation. It has been demonstrated that the formation of graphene passes through the phase of gadolinium carbidization, which is transformed with increasing annealing temperature. It has been established that, at a temperature of 1300 K, gadolinium carbide with the Gd2C3 stoichiometry is transformed into the carbide with the GdC2 stoichiometry. The analysis of all transient phase processes has been performed on the basis of the fine structure of photoelectron lines and dispersion of electron states. It has been shown that the Dirac cone of electron states of graphene is retained.


Carbide Gadolinium Brillouin Zone Carbide Phase Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).CrossRefADSGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).CrossRefADSGoogle Scholar
  3. 3.
    M. I. Katsnelson, K. S. Novoselov, and K. Geim, Nat. Phys. 2, 620 (2006).CrossRefGoogle Scholar
  4. 4.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).CrossRefADSGoogle Scholar
  5. 5.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefADSGoogle Scholar
  6. 6.
    D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).CrossRefADSGoogle Scholar
  7. 7.
    S. Y. Zhou, G. H. Gweon, and A. Lanzara, Ann. Phys. 321, 1730 (2006).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Rybkina, A. G. Rybkin, V. K. Adamchuk, D. Marchenko, A. Varykhalov, J. Sanchez-Berriga, and A. M. Shikin, Nanotechnology 24, 295201 (2013).CrossRefGoogle Scholar
  9. 9.
    A. V. Shikin, A. A. Rybkina, A. G. Rybkin, I. I. Klimovskikh, P. N. Skirdkov, K. A. Zvezdin, and A. K. Zvezdin, Appl. Phys. Lett. 105, 042407 (2014).CrossRefADSGoogle Scholar
  10. 10.
    A. M. Shikin, D. Farias, and K. H. Rieder, Europhys. Lett. 44, 44 (1998).CrossRefADSGoogle Scholar
  11. 11.
    A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K. H. Rieder, Phys. Rev. B: Condens. Matter 62, 13202 (2000).CrossRefADSGoogle Scholar
  12. 12.
    Yu. S. Dedkov, A. M. Shikin, V. K. Adamchuk, S. L. Molodtsov, C. Laubschat, A. Bauer, and G. Kaindl, Phys. Rev. B: Condens. Matter 64, 035405 (2001).CrossRefADSGoogle Scholar
  13. 13.
    A. M, Shikin, V. K. Adamchuk, and K.-H. Rieder, Phys. Solid State 51 (11), 2390 (2009).CrossRefADSGoogle Scholar
  14. 14.
    A. Nagashima, K. Nuka, K. Satoh, H. Itoh, T. Ichinokawa, C. Oshima, and S. Otani, Surf. Sci. 287/288, 609 (1993).CrossRefADSGoogle Scholar
  15. 15.
    A. Nagashima, K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima, and S. Otani, Surf. Sci. 291, 93 (1993).CrossRefADSGoogle Scholar
  16. 16.
    A. J. Bommel, J. E. Crombeen, and A. Van Tooren, Surf. Sci. 48, 463 (1975).CrossRefADSGoogle Scholar
  17. 17.
    I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B: Condens. Matter 58, 16396 (1998).CrossRefADSGoogle Scholar
  18. 18.
    Th. Seyler, K. V. Emtsev, K. Gao, F. Speck, L. Ley, A. Tadich, L. Broekman, J. D. Riley, R. C. G. Leckey, O. Rader, A. Varykhalov, and A. M. Shikin, Surf. Sci. 600, 3906 (2006).CrossRefADSGoogle Scholar
  19. 19.
    A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).CrossRefGoogle Scholar
  20. 20.
    H. Ihara, M. Hirabayashi, and H. Nakagawa, Phys. Rev. B: Solid State 14, 1707 (1976).CrossRefADSGoogle Scholar
  21. 21.
    A. M. Shikin, S. L. Molodtsov, A. G. Vyatkin, V. K. Adamchuk, N. Franco, M. Martin, and M. C. Asensio, Surf. Sci. 429, 287 (1999).CrossRefADSGoogle Scholar
  22. 22.
    A. M. Shikin, V. K. Adamchuk, S. Siebentritt, K.-H. Rieder, S. L. Molodtsov, and C. Laubschat, Phys. Rev. B: Condens. Matter 61, 7752 (2000).CrossRefADSGoogle Scholar
  23. 23.
    S. A. Govorikov, A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, S. L. Molodtsov, C. Laubschat, and A. M. Ionov, Surf. Sci. 474, 98 (2001).CrossRefADSGoogle Scholar
  24. 24.
    S. I. Bozhko, A. N. Chaika, A. M. Ionov, and U. Valbusa, J. Alloys Compd. 323–324, 701 (2001).CrossRefGoogle Scholar
  25. 25.
    S. L. Molodtsov, J. Electron Spectrosc. Relat. Phenom. 96, 157 (1998).MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. A. Popova, A. M. Shikin, A. G. Rybkin, D. E. Marchenko, O. Yu. Vilkov, A. A. Makarova, A. Yu. Varykhalov, and O. Rader, Phys. Solid State 53 (12), 2539 (2011).CrossRefADSGoogle Scholar
  27. 27.
    A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).CrossRefADSGoogle Scholar
  28. 28.
    D. Marchenko, A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba, A. Rybkin, A. M. Shikin, and O. Rader, Nat. Commun. 3, 1232 (2012).CrossRefADSGoogle Scholar
  29. 29.
    A. M. Shikin, A. G. Rybkin, D. Marchenko, A. A. Rybkina, M. R. Scholz, O. Rader, and A. Varykhalov, New J. Phys. 15, 013016 (2013).CrossRefADSGoogle Scholar
  30. 30.
    I. I. Klimovskikh, S. S. Tsirkin, A. G. Rybkin, A. A. Rybkina, M. V. Filianina, E. V. Zhizhin, E. V. Chulkov, and A. M. Shikin, Phys. Rev. B: Condens. Matter 90, 235431 (2014).CrossRefADSGoogle Scholar
  31. 31.
    D. Usachov, A. Fedorov, M. M. Otrokov, A. Chikina, O. Vilkov, A. Petukhov, A. G. Rybkin, Y. M. Koroteev, E. V. Chulkov, V. K. Adamchuk, A. Gruneis, C. Laubschat, and D. V. Vyalikh, Nano Lett. 15, 2396 (2015).CrossRefADSGoogle Scholar
  32. 32.
    E. N. Voloshina and Yu. S. Dedkov, Z. Naturforsch., A: Phys. Sci. 69, 297 (2014).CrossRefADSGoogle Scholar
  33. 33.
    G. V. Samsonov, G.Sh. Upadkhaya, and V. S. Neshpor, Physical Material Science of Carbides (Naukova Dumka, Kiev, 1974) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. O. Shevelev
    • 1
  • E. V. Zhizhin
    • 1
    • 2
  • D. A. Pudikov
    • 1
    • 2
  • I. I. Klimovskikh
    • 1
  • A. G. Rybkin
    • 1
    • 2
  • V. Yu. Voroshnin
    • 1
  • A. E. Petukhov
    • 1
    • 2
  • G. G. Vladimirov
    • 1
  • A. M. Shikin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Centre for Physical Methods of Surface InvestigationSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations