Physics of the Solid State

, Volume 57, Issue 11, pp 2297–2304 | Cite as

High-symmetry phase prediction using trees of group–supergroup relations

  • Yu. E. Kitaev
  • A. G. Panfilov
  • E. S. Tasci
  • M. I. Aroyo
Phase Transitions


A new procedure of constructing the group–supergroup relationship trees is proposed to reveal the highest-possible symmetry structure types (archetypes). Based on the approach, the group-supergroup tree is constructed for the MeO2 crystal family taken as an example.


Structure Type Root Structure Wyckoff Position Crystal Family High Symmetry Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Koch, Acta Crystallogr., Sect. A: Found. Crystallogr. 40, 593 (1984).CrossRefzbMATHGoogle Scholar
  2. 2.
    J. Lima-de-Faria, E. Hellner, F. Liebau, E. Makovicky, and E. Parthé, Acta Crystallogr., Sect. A: Found. Crystallogr. 46, 1 (1990).Google Scholar
  3. 3.
    J. M. Leger, P. E. Tomaszewski, A. Atouf, and A. S. Pereira, Phys. Rev. B: Condens. Matter 47, 14075 (1993).CrossRefADSGoogle Scholar
  4. 4.
    O. Ohtaka, T. Yamanaka, and T. Yagi, Phys. Rev. B: Condens. Matter 49, 9295 (1994).CrossRefADSGoogle Scholar
  5. 5.
    P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, Phys. Rev. B: Condens. Matter 62, 8731 (2000).CrossRefADSGoogle Scholar
  6. 6.
    O. Ohtaka, D. Andrault, P. Bouvier, E. Schultz, and M. Mezouard, J. Appl. Crystallogr. 38, 727 (2005).CrossRefGoogle Scholar
  7. 7.
    Sh. D. Megaw, Crystal Structures: A Working Approach (W. B. Saunders, Philadelphia, 1973).Google Scholar
  8. 8.
    Sh. Bärnighausen, MATCH 9, 139 (1980).zbMATHGoogle Scholar
  9. 9.
    U. Müller, in International Tables for Crystallography, Vol. A1: Symmetry Relations between Space Groups, Ed. by H. Wondratschek and U. Müller (Kluwer, Dordrecht, 2004), pp. 24–25.Google Scholar
  10. 10.
    O. Bock and U. Müller, Acta Crystallogr., Sect. B: Struct. Sci. 58, 594 (2002).CrossRefGoogle Scholar
  11. 11.
    W. H. Baur, Crystallogr. Rev. 13, 65 (2007).CrossRefGoogle Scholar
  12. 12.
    M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Acta Crystallogr., Sect. A: Found. Crystallogr. 62, 115 (2006).CrossRefADSGoogle Scholar
  13. 13.
    M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Z. Kristallogr. 221, 15 (2006).Google Scholar
  14. 14.
    C. Capillas, E. S. Tasci, G. de la Flor, D. Oronbegoa, J. M. Perez-Mato, and M. I. Aroyo, Z. Kristallogr. 226, 186 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Ivantchev, E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, J. M. Igartua, G. Madariaga, and H. Wondratschek, J. Appl. Crystallogr. 35, 511 (2002).CrossRefGoogle Scholar
  16. 16.
    J. M. Igartua, M. I. Aroyo, and J. M. Perez-Mato, Phys. Rev. B: Condens. Matter 54, 12744 (1996).CrossRefADSGoogle Scholar
  17. 17.
    C. Capillas, J. M. Perez-Mato, and M. I. Aroyo, J. Phys.: Condens. Matter 19, 275203 (2007).ADSGoogle Scholar
  18. 18.
    H. Burzlaff and H. Zimmermann, Acta Crystallogr., Sect. A: Found. Crystallogr. 65, 456 (2009).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    M. Ziegler, M. Rosenfeld, W. Kaenzig, and P. Fischer, Helv. Phys. Acta 49, 57 (1976).Google Scholar
  20. 20.
    ICSD Inorganic Crystal Structure Database (Fachinformationszentrum (FIZ), Karlsruhe, Germany, 2009). or Scholar
  21. 21.
    L. Merrill, J. Phys. Chem. Ref. Data 11, 1005 (1982).CrossRefADSGoogle Scholar
  22. 22.
    G. Switzer and Sh. E. Swanson, Am. Mineral. 45, 1272 (1960).Google Scholar
  23. 23.
    Yu. N. Zhuravlev and O. S. Obolonskaya, J. Struct. Chem. 51, 1005 (2010).CrossRefGoogle Scholar
  24. 24.
    V. Ya. Dudarev, A. B. Tsentsiper, and M. S. Dobrolyubova, Sov. Phys. Crystallogr. 18, 477 (1973).Google Scholar
  25. 25.
    T. Leisegang, A. A. Levin, J. Walter, and D. C. Meyer, Cryst. Res. Technol. 40, 95 (2005).CrossRefGoogle Scholar
  26. 26.
    A.L. Ivanovskii, T.I. Chupakhina, V. G. Zubkov, A. P. Tyutyunnik, V. N. Krasilnikov, G. V. Bazuev, S. V. Okatov, and A. I. Lichtenstein, Phys. Lett. A 348, 66 (2005).CrossRefADSGoogle Scholar
  27. 27.
    A. Magneli, Acta Crystallogr. 9, 1038 (1956).CrossRefGoogle Scholar
  28. 28.
    Sh. P. S. Corrĕa, I. P. Cavalcante, L. G. Martinez, C. G. P. Orlando, and M. T. D. Orlando, Braz. J. Phys. 34, 1208 (2004).CrossRefGoogle Scholar
  29. 29.
    A. V. Arakcheeva, V. V. Grinevich, V. F. Shamrai, M. Meier, and Zh. Shapui, Crystallogr. Rep. 44, 2 (1999).ADSGoogle Scholar
  30. 30.
    V. I. Khitrova, V. V. Klechkovskaya, and Z. G. Pinsker, Sov. Phys. Crystallogr. 12 (6), 907 (1967).Google Scholar
  31. 31.
    K. D. Rogers, Powder Diffr. 8, 240 (1993).CrossRefADSGoogle Scholar
  32. 32.
    A. Gupta, A. Kumar, M. S. Hegde, and U. V. Waghmare, J. Chem. Phys. 132, 194702 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. E. Kitaev
    • 1
    • 2
  • A. G. Panfilov
    • 1
    • 2
  • E. S. Tasci
    • 2
    • 3
  • M. I. Aroyo
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Departamento de Física de la Materia Condensada, Facultad de Ciencia y TecnologiaUniversidad del Pais VascoLejona, Vizcaya, Gran BilbaoSpain
  3. 3.Department of Physics EngineeringHacettepe University, ÜniversitelerCankaya/AnkaraTurkey

Personalised recommendations