Physics of the Solid State

, Volume 57, Issue 11, pp 2184–2190 | Cite as

Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition

  • N. A. Feoktistov
  • S. A. Grudinkin
  • V. G. Golubev
  • M. A. Baranov
  • K. V. Bogdanov
  • S. A. Kukushkin
Semiconductors

Abstract

The evolution of the surface morphology of diamond particles synthesized by chemical vapor deposition (CVD) on silicon substrates has been investigated. It has been found that, when the diamond particles reach a critical size of less than 800 nm, the surface of the diamond faces is transformed. Particles with sizes of no more than 100–300 nm have a well-faceted surface covered by the {100} and {111} faces. An increase in the size of diamond particles leads to a change in the structure of their surface. The surface is covered by the {100} faces surrounded by a disordered phase. With a further increase in the particle size (up to ∼2000 nm), the {100} faces disappear and the diamond particles are covered by high-index faces. A model explaining the evolution of the surface morphology of diamond particles has been proposed. According to this model, during the evolution of diamond particles with an increase in their size, the mechanism of layer-bylayer growth changes to normal growth, which leads to a significant transformation of the entire surface of the diamond particles. The critical size of a two-dimensional nucleus formed on the {100} and {111} faces, at which the change in the growth mechanism begins to occur, has been calculated. A method has been proposed for controlling the morphology of diamond particles during their synthesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Nemanich, J. A. Carlisle, A. Hirata, and K. Haenen, MRS Bull. 39, 490 (2014).CrossRefGoogle Scholar
  2. 2.
    J. J. Gracio, Q. H. Fan, and J. C. Madaleno, J. Phys. D: Appl. Phys. 43, 374017 (2010).CrossRefGoogle Scholar
  3. 3.
    T. Teraji, Phys. Status Solidi A 203, 3324 (2006).CrossRefADSGoogle Scholar
  4. 4.
    S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K. V. Bogdanov, A. V. Baranov, A. Ya. Vul’, and V. G. Golubev, J. Phys. D: Appl. Phys. 45, 062001 (2012).CrossRefADSGoogle Scholar
  5. 5.
    M. Nesládek, D. Tromson, C. Mer, P. Bergonzo, P. Hubik, and J. Mares, Appl. Phys. Lett. 88, 232111 (2006).CrossRefADSGoogle Scholar
  6. 6.
    S. Yamasaki, E. Gheeraert, and Y. Koide, MRS Bull. 39, 499 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Liu and D. S. Dandy, Diamond Relat. Mater. 4, 1173 (1995).CrossRefADSGoogle Scholar
  8. 8.
    J. E. Butler, Y. A. Mankelevich, A. Cheesman, J. Ma, and M. N. R. Ashfold, J. Phys.: Condens. Matter 21, 364201 (2009).Google Scholar
  9. 9.
    D. V. Fedoseev, V. P. Varnin, and B. V. Deryagin, Usp. Khim. 53, 753 (1984).CrossRefGoogle Scholar
  10. 10.
    A. P. Rudenko, I. I. Kulakova, and V. L. Skvortsova, Usp. Khim. 62, 99 (1993).CrossRefGoogle Scholar
  11. 11.
    K. E. Spear and M. Frenklach, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, New York, 1994), Chap. 2, pp. 243–304.Google Scholar
  12. 12.
    M. V. Baidakova, A. Ya. Vul’, V. G. Golubev, S. A. Grudinkin, V. G. Melekhin, N. A. Feoktistov, and A. Krüger, Semiconductors 36 (6), 615 (2002).CrossRefADSGoogle Scholar
  13. 13.
    C. Wild, N. Herres, and P. Koidl, J. Appl. Phys. 68, 973 (1990).CrossRefADSGoogle Scholar
  14. 14.
    O. A. Williams, Diamond Relat. Mater. 20, 621 (2011).CrossRefADSGoogle Scholar
  15. 15.
    I. B. Yanchuk, M. Y. Valakh, A. Ya. Vul’, V. G. Golubev, S. A. Grudinkin, N. A. Feoktistov, A. Richter, and B. Wolf, Diamond Relat. Mater. 13, 266 (2004).CrossRefADSGoogle Scholar
  16. 16.
    N. A. Feoktistov, V. I. Sakharov, I. T. Serenkov, V. A. Tolmachev, I. V. Korkin, A. E. Aleksenskii, A. Ya. Vul’, and V. G. Golubev, Tec Sh. Phys. 56 (5), 718 (2011).CrossRefGoogle Scholar
  17. 17.
    N. A. Feoktistov, V. G. Golubev, S. A. Grudinkin, T. S. Perova, R. A. Moore, and A. Ya. Vul’, Proc. SPIE—Int. Soc. Opt. Eng. 5824, 157 (2005).ADSGoogle Scholar
  18. 18.
    S. Prawer and R. Nemanich, Philos. Trans. R. Soc. London, Ser. A 362, 2537 (2004).CrossRefADSGoogle Scholar
  19. 19.
    J. Michler, Y. von Kaenel, J. Stiegler, and E. Blank, J. Appl. Phys. 83, 187 (1998).CrossRefADSGoogle Scholar
  20. 20.
    R. L. Parker, Solid State Phys. 25, 151 (1970).Google Scholar
  21. 21.
    K. A. Jackson, D. R. Uhlmann, and J. D. Hunnt, J. Cryst. Growth 1, 1 (1967).CrossRefADSGoogle Scholar
  22. 22.
    W. K. Burton, N. Cabrera, and F. S. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).MATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 41, 1237 (1993).CrossRefGoogle Scholar
  24. 24.
    S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 42, 2797 (1994).CrossRefGoogle Scholar
  25. 25.
    S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 151, 1 (1996).CrossRefADSGoogle Scholar
  26. 26.
    S. A. Kukushkin, Thin Solid Films 207, 302 (1992).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. A. Feoktistov
    • 1
    • 2
  • S. A. Grudinkin
    • 1
  • V. G. Golubev
    • 1
  • M. A. Baranov
    • 3
  • K. V. Bogdanov
    • 3
  • S. A. Kukushkin
    • 2
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State University of Information TechnologiesMechanics and OpticsSt. PetersburgRussia

Personalised recommendations