Advertisement

Physics of the Solid State

, Volume 57, Issue 9, pp 1746–1751 | Cite as

Specific features of the electrical properties in partially graphitized porous biocarbons of beech wood

  • V. V. Popov
  • T. S. Orlova
  • A. Gutierrez-Pardo
  • J. Ramirez-Rico
Semiconductors

Abstract

The electrical and galvanomagnetic properties of partially graphitized highly porous bioC(Ni) biocarbon matrices produced by pyrolysis (carbonization) of beech wood at temperatures T carb = 850–1600°C in the presence of a Ni-containing catalyst have been studied in comparison with their microstructural features. The temperature dependences of the resistivity, the magnetoresistance, and the Hall coefficient have been measured in the temperature range of 4.2–300 K in magnetic fields to 28 kOe. It has been shown that an additional graphite phase introduction into samples with T carb ≥ 1000°C results in an increase in the carrier mobility by a factor of 2–3, whereas the carrier (hole) concentration remains within ~1020 cm−3, as in biocarbons obtained without catalyst. An analysis of experimental data has demonstrated that the features of the conductivity and magnetoresistance of these samples are described by quantum corrections related to their structural features, i.e., the formation of a globular graphite phase of nano- and submicrometer sizes in the amorphous matrix. The quantum corrections to the conductivity decrease with increasing carbonization temperature, which indicates an increase in the degree of structure ordering and is in good agreement with microstructural data.

Keywords

Carb Hall Coefficient Carbonization Temperature Beech Wood Graphite Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).CrossRefGoogle Scholar
  2. 2.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
  3. 3.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1 (1), 56 (2004).CrossRefGoogle Scholar
  4. 4.
    I. A. Smirnov, T. S. Orlova, B. I. Smirnov, S. W. Wlosewicz, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51 (11), 2264 (2009).CrossRefADSGoogle Scholar
  5. 5.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, and K. T. Faber, Phys. Solid State 52 (7), 1348 (2010).CrossRefADSGoogle Scholar
  6. 6.
    A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002).CrossRefGoogle Scholar
  7. 7.
    J. M. Qian, J. P. Wang, and Z. H. Jin, Mater. Sci. Eng., A 371 (1–2), 229 (2004).CrossRefGoogle Scholar
  8. 8.
    V. S. Kaul, K. T. Faber, R. Sepúlveda, A. R. de Arellano Lopez, and J. Martínez-Fernández, Mater. Sci. Eng., A 428 (1–2), 225 (2006).CrossRefGoogle Scholar
  9. 9.
    F. M. Varela-Feria, J. Martínez-Fernández, A. R. de Arellano-López, and M. Singh, J. Eur. Ceram. Soc. 22 (14–15), 2719 (2002).CrossRefGoogle Scholar
  10. 10.
    A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).CrossRefGoogle Scholar
  11. 11.
    L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  12. 12.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26 (1), 18 (2011).CrossRefADSGoogle Scholar
  13. 13.
    M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Gutiérrez-Pardo, J. Ramírez-Rico, A. R. de Arellano-López, and J. Martínez-Fernández, J. Mater. Sci. 49, 22 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Gutiérrez-Pardo, J. Ramírez-Rico, R. CabezasRodríguez, and J. Martínez-Fernández, J. Power Sources 278, 18 (2015).CrossRefGoogle Scholar
  16. 16.
    H. M. Cheng, H. Endo, T. Okabe, K. Saito, and G. B. Zheng, J. Porous Mater. 6 (3), 233 (1999).CrossRefGoogle Scholar
  17. 17.
    A. Oya and H. Marsh, J. Mater. Sci. 17 (2), 309 (1982).CrossRefADSGoogle Scholar
  18. 18.
    A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).CrossRefGoogle Scholar
  19. 19.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de ArellanoLopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48 (3), 441 (2006).CrossRefADSGoogle Scholar
  20. 20.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50 (12), 2245 (2008).CrossRefADSGoogle Scholar
  21. 21.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).CrossRefADSGoogle Scholar
  22. 22.
    N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56 (11), 2348 (2014).CrossRefADSGoogle Scholar
  23. 23.
    R. Sinclair, T. Itoh, and R. Chin, Microsc. Microanal. 8 (4), 288 (2002).CrossRefADSGoogle Scholar
  24. 24.
    M. Sevilla, C. Sanchis, T. Valdés-Solis, E. Morallón, and A. B. Fuertes, J. Phys. Chem. C 111 (27), 9749 (2007).CrossRefGoogle Scholar
  25. 25.
    F. J. Derbyshire, A. E. B. Presland, and D. L. Trimm, Carbon 13 (2), 111 (1975).CrossRefGoogle Scholar
  26. 26.
    C. Yokokawa, K. Hosokawa, and Y. Takegami, Carbon 5 (5), 475 (1967).CrossRefGoogle Scholar
  27. 27.
    T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).CrossRefADSGoogle Scholar
  28. 28.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51 (11), 2247 (2009).CrossRefADSGoogle Scholar
  29. 29.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53 (2), 276 (2011).CrossRefADSGoogle Scholar
  30. 30.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez, and J. Ramirez-Rico, Phys. Solid State 55 (9), 1884 (2013).CrossRefADSGoogle Scholar
  31. 31.
    V. F. Gantmakher, Electrons and Disorder in Solids (Fizmatizdat, Moscow, 2003; Oxford University Press, Oxford, 2005).Google Scholar
  32. 32.
    V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 50 (10), 1819 (2008).CrossRefADSGoogle Scholar
  33. 33.
    V. I. Berezkin and V. V. Popov, Phys. Solid State 49 (9), 1803 (2007).CrossRefADSGoogle Scholar
  34. 34.
    A. Kawabata, J. Phys. Soc. Jpn. 50, 2461 (1981).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Popov
    • 1
  • T. S. Orlova
    • 1
  • A. Gutierrez-Pardo
    • 2
  • J. Ramirez-Rico
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Instituto de Ciencia de Materiales de Sevilla (ICMS)Universidad de Sevilla—CSICSevillaSpain

Personalised recommendations