Advertisement

Physics of the Solid State

, Volume 57, Issue 9, pp 1895–1898 | Cite as

Magnetic linear dichroism of photoemission from ultrathin manganese films on silicon

  • M. V. Gomoyunova
  • G. S. Grebenyuk
  • I. I. ProninEmail author
  • B. V. Senkovskiy
Surface Physics and Thin Films
  • 29 Downloads

Abstract

The magnetic linear dichroism (MLD) effect in photoemission of Mn 3p electrons was used to study magnetic properties of Mn films (to 2.5 nm thick) grown on the Si(111)-(7 × 7) surface at room temperature and manganese silicide films grown by solid-phase epitaxy. The experiments were performed using linearly polarized light with a photon energy of 130 eV, incident at an angle of 30° to the sample surface. Photoelectron spectra were measured in a narrow solid angle focused along the normal to the surface for two opposite sample magnetization directions in the surface plane, perpendicular to the polarization vector of the light wave. It was shown that the MLD effect characteristic of films with high-temperature ferromagnetism appears after depositing ∼2 nm Mn. The formation of manganese silicides upon annealings of the sample with deposited 2.5 nm Mn results in the disappearance of the MLD effect.

Keywords

Deposition Dose Solid Phase Epitaxy Magnetic Linear Dichroism Remanent Magnetization Satura Tion High Temperature Ferromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Nolph, E. Vescovo, and P. Reinke, Appl. Surf. Sci. 255, 7642 (2009).CrossRefADSGoogle Scholar
  2. 2.
    Z.-Q. Zou and W.-C. Li, Phys. Lett. A 375, 849 (2011).CrossRefADSGoogle Scholar
  3. 3.
    S. G. Azatyan, O. A. Utas, N. V. Denisov, A. V. Zotov, and A. A. Saranin, Surf. Sci. 605, 289 (2011).CrossRefADSGoogle Scholar
  4. 4.
    F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 786 (2004).CrossRefADSGoogle Scholar
  5. 5.
    M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B: Condens. Matter 71, 033302 (2005).CrossRefADSGoogle Scholar
  6. 6.
    A. F. Orlov, A. B. Granovsky, L. A. Balagurov, I. V. Kulemanov, Yu. N. Parkhomenko, N. S. Perov, E. A. Gan’shina, V. T. Bublik, K. D. Shcherbachev, A. V. Kartavykh, V. I. Vdovin, A. Sapelkin, Yu. A. Agafonov, V. I. Zinenko, A. Rogalev, et al., J. Exp. Theor. Phys. 109 (4), 602 (2009).CrossRefADSGoogle Scholar
  7. 7.
    C. Awo-Affouda, M. Bolduc, M. B. Huang, F. Ramos, K. A. Dunn, B. Thiel, G. Agnello, and V. P. LaBella, J. Vac. Sci. Technol., A 24, 1644 (2006).CrossRefGoogle Scholar
  8. 8.
    V. Ko, K. L. Teo, T. Liew, T. C. Chong, MacKenzie, I. MacLaren, and J. N. Chapman, J. Appl. Phys. 104, 033912 (2008).CrossRefADSGoogle Scholar
  9. 9.
    Shengqiang Zhou, K. Potzger, Gufei Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grötzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, and D. Geiger, Phys. Rev. B: Condens. Matter 75, 085203 (2007).CrossRefADSGoogle Scholar
  10. 10.
    Tiecheng Li, Liping Guo, Congxiao Liu, Guoliang Peng, Bo He, Zhiyun Pan, Zhongpo Zhou, Shuigang Xu, and Zuci Quan, Vacuum 86, 1358 (2012).CrossRefGoogle Scholar
  11. 11.
    X. C. Liu, Y. B. Lin, J. F. Wang, Z. H. Lu, Z. L. Lu, J. P. Xu, L. Y. Lv, F. M. Zhang, and Y. W. Du, J. Appl. Phys. 102, 033902 (2007).CrossRefADSGoogle Scholar
  12. 12.
    E. S. Demidov, Yu. A. Danilov, V. V. Podol’skii, V. P. Lesnikov, M. V. Sapozhnikov, and A. I. Suchkov, JETP Lett. 83 (12), 568 (2006).CrossRefGoogle Scholar
  13. 13.
    B. A. Aronzon, V. V. Rylkov, S. N. Nikolaev, V. V. Tugushev, S. Caprara, V. V. Podolskii, V. P. Lesnikov, A. Lashkul, R. Laiho, R. R. Gareev, N. S. Perov, and A. S. Semisalova, Phys. Rev. B: Condens. Matter 84, 075209 (2011).CrossRefADSGoogle Scholar
  14. 14.
    S. N. Nikolaev, B. A. Aronzon, V. V. Ryl’kov, V. V. Tugushev, E. S. Demidov, S. A. Levchuk, V. P. Lesnikov, V. V. Podol’skii, and R. R. Gareev, JETP Lett. 89 (12), 603 (2009).CrossRefADSGoogle Scholar
  15. 15.
    S. H. Chiu, H. S. Hsu, and J. C. A. Huang, J. Appl. Phys. 103, 07D110 (2008).Google Scholar
  16. 16.
    L. Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson, and D. J. Smith, Phys. Rev. B: Condens. Matter 77, 073306 (2008).CrossRefADSGoogle Scholar
  17. 17.
    M. V. Gomoyunova, G. S. Grebenyuk, I. I. Pronin, B. V. Sen’kovskii, and D. V. Vyalykh, Phys. Solid State 57 (3), 624 (2015).CrossRefADSGoogle Scholar
  18. 18.
    Ch. Roth, F. U. Hillebrecht, H. B. Rose, and E. Kisker, Phys. Rev. Lett. 70, 3479 (1993).CrossRefADSGoogle Scholar
  19. 19.
    F. Sirotti and G. Rossi, Phys. Rev. B: Condens. Matter 49, 15682 (1994).CrossRefADSGoogle Scholar
  20. 20.
    N. Janke-Gilman, M. Hochstrasser, and R. F. Willis, Phys. Rev. B: Condens. Matter 70, 184439 (2004).CrossRefADSGoogle Scholar
  21. 21.
    I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, S. L. Molodtsov, J. Appl. Phys. 104, 104914 (2008).CrossRefADSGoogle Scholar
  22. 22.
    I. I. Pronin, M. V. Gomoyunova, S. M. Solov’ev, O. Yu. Vilkov, and D. V. Vyalykh, Phys. Solid State 53 (3), 616 (2011).CrossRefADSGoogle Scholar
  23. 23.
    M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. 56 (6), 856 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. V. Gomoyunova
    • 1
  • G. S. Grebenyuk
    • 1
  • I. I. Pronin
    • 1
    Email author
  • B. V. Senkovskiy
    • 2
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institut für FestkörperphysikTechnische Universität DresdenDresdenGermany
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations