Physics of the Solid State

, Volume 57, Issue 8, pp 1559–1564 | Cite as

Influence of implantation of Au ions on the microstructure and mechanical properties of the nanostructured multielement (TiZrHf VNbTa)N coating

  • A. D. Pogrebnjak
  • I. V. Yakushchenko
  • O. V. Bondar
  • O. V. Sobol’
  • V. M. Beresnev
  • K. Oyoshi
  • H. Amekura
  • Y. Takeda
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

It has been found that the phase with the fcc lattice of the NaCl structural type is formed due to the vacuum-arc deposition of the nanostructured multicomponent (TiZrHfVNbTa)N coating. Implantation of negative Au ions with a dose of 1 × 1017 cm−2 leads to the formation of a disordered polycrystalline structure without a preferred orientation of the fcc phase and nanocrystallites from 5–7 to 1–3 nm is size, which are dispersed in a layer up to 35 nm in depth. Nanohardness increases to 33 GPa, and the Vickers hardness reaches 51 GPa. Gold nanoclusters are formed in the near-surface region, while the fcc lattice and the formation of local Au regions are observed in the coating itself. Fragments with the hcp lattice are formed at depths above 180 nm because of the low nitrogen concentration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    A. D. Pogrebnjak, A. A. Bagdasaryan, I. V. Yakushchenko, and V. M. Beresnev, Russ. Chem. Rev. 83(11), 1027 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    B. S. Murty, J. W. Yeh, and S. Ranganathan, High-Entropy Alloys (Butterworth-Heinemann, Oxford, 2014).CrossRefGoogle Scholar
  4. 4.
    A. D. Pogrebnjak, I. V. Yakushchenko, G. Abadias, G. P. Chartier, O. V. Bondar, V. M. Beresnev, Y. Takeda, O. V. Sobol’, K. Oyoshi, A. A. Andreyev, and B. A. Mukushev, J. Superhard Mater. 35(6), 356 (2013).CrossRefGoogle Scholar
  5. 5.
    A. D. Pogrebnjak, V. M. Beresnev, D. A. Kolesnikov, M. V. Kaverin, A. P. Shipilenko, K. Oyoshi, Y. Takeda, R. Krause-Rehberg, and A. G. Ponomarev, Tech. Phys. Lett. 39(3), 280 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    A. D. Pogrebnjak, D. Eyidi, G. Abadias, O. V. Bondar, V. M. Beresnev, and O. V. Sobol, Int. J. Refract. Met. Hard Mater. 48, 222 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Feng, G. Tang, X. Ma, M. Sun, and L. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 301, 29 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Pogrebnjak, I. V. Yakushchenko, A. A. Bagdasaryan, O. V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V. M. Beresnev, and O. V. Sobol, Mater. Chem. Phys. 147(3), 1079 (2014).CrossRefGoogle Scholar
  9. 9.
    F. F. Komarov, Ion Implantation into Metals (Metallurgiya, Moscow, 1990) [in Russian].Google Scholar
  10. 10.
    A. D. Pogrebnjak, S. N. Bratushka, V. M. Beresnev, and N. Levintant-Zayonts, Russ. Chem. Rev. 82(12), 1135 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    N. Kishimoto, V. T. Gritsyna, Y. Takeda, C. G. Lee, and T. Saito, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 299 (1988); N. Kishimoto, V. T. Gritsyna, Y. Takeda, C. G. Lee, and T. Saito, J. Surf. Sci. 4, 220 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    V. Ivashchenko, S. Veprek, A. Pogrebnjak, and B. Postolnyi, Sci. Technol. Adv. Mater. 15(2), 025007 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • I. V. Yakushchenko
    • 1
  • O. V. Bondar
    • 1
  • O. V. Sobol’
    • 2
  • V. M. Beresnev
    • 3
  • K. Oyoshi
    • 4
  • H. Amekura
    • 4
  • Y. Takeda
    • 4
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine
  3. 3.Karazin Kharkiv National UniversityKharkivUkraine
  4. 4.National Institute for Material Science (NIMS)Tsukuba, Ibaraki PrefectureJapan

Personalised recommendations