Physics of the Solid State

, Volume 57, Issue 8, pp 1659–1665 | Cite as

Specific features of thermal dissolution of silver and gold thin films in silicate glass

  • A. V. Nashchekin
  • M. V. Pogumirskii
  • P. V. Rostokin
  • A. I. Sidorov
  • T. A. Shakhverdov
Surface Physics and Thin Films
  • 47 Downloads

Abstract

It has been shown experimentally that the thermal dissolution of silver and gold thin films in silicate glass is accompanied by the formation of a monolayer of silver and gold micro- and nanocrystals, respectively, on the surface of the glass. These processes occur at temperatures well below the melting temperature of the metal. Microcrystals are formed predominantly at the edges of islands of the metal film, where there is a sufficient amount of the material for their growth. Silver and gold nanocrystals are formed in the case when atoms of the metal dissolved in the glass repeatedly emerge on the glass surface. Silver and gold dissolved in the glass exist not only in the form of atoms and ions but also in the form of charged and neutral molecular clusters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Zhou, J. D. Mandia, M. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, Opt. Express 21, 245 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    C. K. Tagada, S. R. Dugasani, R. Aiyer, S. Park, A. Kulkarni, and S. Sabharwal, Sens. Actuators, B 183, 144 (2013).CrossRefGoogle Scholar
  3. 3.
    A. V. Nashchekin, V. N. Nevedomskiy, P. A. Obraztsov, O. V. Stepanenko, A. I. Sidorov, O. A. Usov, K. K. Turoverov, and S. G. Konnikov, Proc. SPIE—Int. Soc. Opt. Eng. 8427, 842 (2012).Google Scholar
  4. 4.
    S. Choi, R. M. Dickson, and J. Yu, Chem. Soc. Rev. 41, 1867 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Yang and Z. Lu, Int. J. Opt. 2012, 1 (2012).CrossRefMATHGoogle Scholar
  6. 6.
    P. Hewageegana and M. I. Stockman, Infrared Phys. Technol. 50, 177 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    C. W. Tseng, Y. L. Chen, and Y. T. Tao, Org. Electron. 13, 1436 (2012).CrossRefGoogle Scholar
  8. 8.
    X. R. Jin, Y. Lu, H. Zheng, Y. P. Lee, J. Y. Rhee, K. W. Kim, and W. H. Jang, Opt. Commun. 284, 4766 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, Opt. Express 18, 14079 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    R. Chang, H. P. Chiang, P. T. Leung, D. P. Tsai, and W. S. Tse, Solid State Commun. 133, 315 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    X. Ma, J. Benavides, C. R. Haughn, F. Xu, M. F. Doty, and S. G. Cloutier, Org. Electron. 14, 1916 (2013).CrossRefGoogle Scholar
  12. 12.
    M. R. Singh, Superlattices Microstruct. 43, 537 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Rep. Prog. Phys. 75, 161 (2012).CrossRefGoogle Scholar
  14. 14.
    M. A. Garcia, J. Phys. D: Appl. Phys. 44, 1 (2011).CrossRefGoogle Scholar
  15. 15.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  16. 16.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
  17. 17.
    L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].Google Scholar
  18. 18.
    S. V. Karpov and V. V. Slabko, Optical and Photophysical Properties of Fractal Structured Metal Sols (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003) [in Russian].Google Scholar
  19. 19.
    S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, Phys. Rev. B: Condens. Matter. 71, 033406 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    S. L. Stoll, E. G. Gillan, and A. R. Barron, Chem. Vap. Deposition 2, 182 (1996).CrossRefGoogle Scholar
  21. 21.
    Y. Kaganovskii, E. Mogilko, A. A. Lipovskii, and M. Rosenbluh, J. Phys.: Conf. Ser. 61, 508 (2007).ADSGoogle Scholar
  22. 22.
    P. A. Obraztsov, A. V. Nashchekin, N. V. Nikonorov, A. I. Sidorov, A. V. Panfilova, and P. N. Brunkov, Phys. Solid State 55(6), 1272 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    R. A. Ganeev, A. I. Ryasnyanskii, A. L. Stepanov, M. K. Kodirov, and T. Usmanov, Opt. Spectrosc. 95(6), 967 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    A. I. Sidorov, A. V. Nashchekin, V. N. Nevedomskiy, O. A. Usov, and O. A. Podsvirov, Int. J. Nanosci. 10, 1265 (2011).CrossRefGoogle Scholar
  25. 25.
    O. A. Podsvirov, A. I. Ignatiev, A. V. Nashchekin, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomsky, O. A. Usov, and A. V. Vostokov, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 3103 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    A. I. Ignat’ev, A. V. Nashchekin, V. M. Nevedomskii, O. A. Podsvirov, A. I. Sidorov, A. P. Solov’ev, and O. A. Usov, Tech. Phys. 56(5), 662 (2011).CrossRefGoogle Scholar
  27. 27.
    O. A. Podsvirov, A. I. Sidorov, V. A. Tsekhomskii, and A. V. Vostokov, Phys. Solid State 52,(9), 1906 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    V. S. Brunov, O. A. Podsvirov, A. I. Sidorov, and D. V. Churaev, Tech. Phys. 59(8), 1215 (2014).CrossRefGoogle Scholar
  29. 29.
    V. S. Brunov, O. A. Podsvirov, M. A. Prosnikov, and A. I. Sidorov, Tech. Phys. 59(12), 1863 (2014).CrossRefGoogle Scholar
  30. 30.
    A. Tervonen, B. R. West, and S. Honkanen, Opt. Eng. 50, 071107 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    I. A. Demichev, A. I. Ignat’ev, N. V. Nikonorov, E. M. Sgibnev, A. I. Sidorov, T. A. Khrushcheva, and T. A. Shakhverdov, Opt. Spectrosc. 116(4), 587 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    W. Zheng and T. Kurobori, J. Lumin. 131, 36 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Fedrigo, W. Harbich, and J. Buttet, J. Chem. Phys. 99, 5712 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, Chem. Phys. Lett. 313, 105 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    W. Harbich, C. Sieber, K.-H. Meiwes-Broer, and C. Felix, Phys. Rev. B: Condens. Matter 76, 104306 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93, 077402 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rösch, J.-M. Antonietti, M. Michalski, U. Heiz, and H. Jones, J. Phys. Chem. B. 109, 19876 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Nashchekin
    • 1
  • M. V. Pogumirskii
    • 2
  • P. V. Rostokin
    • 2
  • A. I. Sidorov
    • 2
    • 3
  • T. A. Shakhverdov
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.St. Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations