Advertisement

Physics of the Solid State

, Volume 57, Issue 7, pp 1477–1481 | Cite as

Interaction of the Stone-Wales defects in graphene

  • L. A. Openov
  • A. I. Podlivaev
Graphenes

Abstract

The interaction of Stone-Wales defects in graphene has been investigated by computer modeling. It has been shown that the defects can both repel and attract each other (depending on their mutual orientation and distance between them). The determining role in the attraction mechanism is apparently played by strong anisotropic deformation of graphene by defects. The constructive interference of wavy distortions of the monolayer structure formed by defects leads to large transverse atomic displacements, which can be one of the causes of the experimentally observed “crumpled” graphene texture.

Keywords

Wale Defect Transverse Displacement Defect Core Core Atom Attraction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A A. Firsov, Science (Washington) 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    L. Li, S. Reich, and J. Robertson, Phys. Rev. B: Condens. Matter 72, 184109 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Podlivaev and L. A. Openov, Phys. Solid State 57(4), 820 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    J. Ma, D. Alfé, A. Michaelides, and E. Wang, Phys. Rev. B: Condens. Matter 80, 033407 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    X. Peng and R. Ahuja. Nano Lett. 8, 4464 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    L. Chen, H. Hu, Yu. Quyang, H. Z. Pan, Y. Y. Sun, and F. Liu, Carbon 49, 3356 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Chen, J. Li, D. Li, M. Wei, and X. Wang, Solid State Commun. 152, 1985 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 446, 60 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    V. F. Elesin and L. A. Openov, Surf. Sci. 442, 131 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    S. N. Shirodkar and U. V. Waghmare, Phys. Rev. B: Condens. Matter 86, 165401 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    L. A. Openov, A. I. Podlivaev, and M. M. Maslov, Phys. Lett. A 376, 3146 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Elesin, A. I. Podlivaev, and L. A. Openov, Phys. Low-Dimens. Struct. 11/12, 91 (2000).Google Scholar
  16. 16.
    A. I. Podlivaev and L. A. Openov, Phys. Solid State 48(11), 2226 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    V. F. Elesin, V. A. Kashurnikov, L. A. Openov, and A. I. Podlivaev, Sov. Phys. JETP 72(1), 133 (1991).Google Scholar
  18. 18.
    D. Marton, K. J. Boyd, T. Lytle, and J. W. Rabalais, Phys. Rev. B: Condens. Matter 48, 6757 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    V. F. Elesin and L. A. Openov, Phys. Low-Dimens. Struct. 7/8, 195 (1998).Google Scholar
  20. 20.
    A. I. Podlivaev and L. A. Openov, JETP Lett. 101(3), 173 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia
  2. 2.Research Institute for the Development of Scientific and Educational Potential of YouthMoscowRussia

Personalised recommendations