Physics of the Solid State

, Volume 57, Issue 6, pp 1177–1182 | Cite as

Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures

  • M. Yu. Gutkin
  • S. A. Krasnitckii
  • A. M. Smirnov
  • A. L. Kolesnikova
  • A. E. Romanov
Mechanical Properties, Physics Of Strength, and Plasticity


This paper has considered theoretical models of misfit stress relaxation in solid and hollow “core-shell” composite nanoparticles of semiconductors and metals due to the formation of dislocations of two types: circular prismatic dislocation loops (PDLs) lying at the interface in the equatorial nanoparticle plane and rectangular PDLs growing from the free surface of such a nanoparticle and extended along its surface. Critical conditions of nucleation of such loops have been compared. It has been shown that either a coherent (dislocation-free) state of the nanoparticle or its relaxed state with a circular PDL at the interface is favorable in the case of a relatively small lattice misfit between the core and shell materials. For large misfits, the coherent state is unfavorable. In this case, as the shell thickness increases, it can be expected that, first, rectangular PDLs will appear, then circular PDLs will be formed while retaining rectangular PDLs, and then rectangular PDLs will gradually grow and transform to circular PDLs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, Small 6, 2781 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Behrens, Nanoscale 3, 877 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    C. De Mello Donega, Chem. Soc. Rev. 40, 1512 (2011).CrossRefGoogle Scholar
  4. 4.
    D. Shi, N. M. Bedford, and H. S. Cho, Small 7, 2549 (2011).CrossRefGoogle Scholar
  5. 5.
    R. G. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012).CrossRefGoogle Scholar
  6. 6.
    L. Cheng, C. Wang, and Z. Liu, Nanoscale 5, 23 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    C. S. Kim, B. Duncan, B. Creran, and V. M. Rotello, Nano Today 8, 439 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Z. Chen, S. Desinan, R. Rosei, F. Rosei, and D. L. Ma, Chem. Commun. (Cambridge) 48, 8009 (2012).CrossRefGoogle Scholar
  9. 9.
    H. M. Song, D. H. Anjum, R. Sougrat, M. N. Hedhili, and N. M. Khashab, J. Mater. Chem. 22, 25003 (2012).CrossRefGoogle Scholar
  10. 10.
    B. T. Sneed, C. N. Brodsky, C. H. Kuo, L. K. Lamontagne, Y. Jiang, Y. Wang, F. Tao, W. Huang, and C. K. Tsung, J. Am. Chem. Soc. 135, 14691 (2013).CrossRefGoogle Scholar
  11. 11.
    R. G. Chaudhuri and S. Paria, J. Phys. Chem. C 117, 23385 (2013).CrossRefGoogle Scholar
  12. 12.
    L. I. Trusov, M. Yu. Tanakov, V. G. Gryaznov, A. M. Kaprelov, and A. E. Romanov, J. Cryst. Growth 114, 133 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    M. Yu. Gutkin, Strength and Plasticity of Nanocomposites (St. Petersburg Polytechnic University, St. Petersburg, 2011) [in Russian].Google Scholar
  14. 14.
    M. Yu. Gutkin, Int. J. Eng. Sci. 61, 59 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Ding, F. Fan, Z. Tian, and Z. L. Wang, J. Am. Chem. Soc. 132, 12480 (2010).CrossRefGoogle Scholar
  16. 16.
    N. Bhattarai, G. Casillas, A. Ponce, and M. Jose-Yacaman, Surf. Sci. 609, 161 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Ding, X. Sun, Z. L. Wang, and S. Sun, Appl. Phys. Lett. 100, 111603 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    X. Chen, Y. Lou, A. C. Samia, and C. Burda, Nano Lett. 3, 799 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    M. Yu. Gutkin, A. L. Kolesnikova, S. A. Krasnitsky, and A. E. Romanov, Phys. Solid State 56(4), 723 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    M. Yu. Gutkin, A. L. Kolesnikova, S. A. Krasnitckii, A. E. Romanov, and A. G. Shalkovskii, Scr. Mater. 83, 1 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Yu. Gutkin and A. M. Smirnov, Phys. Solid State 56, 703 (2014).ADSGoogle Scholar
  22. 22.
    M. Yu. Gutkin and A. M. Smirnov, J. Phys.: Conf. Ser. 541, 012007 (2014).ADSGoogle Scholar
  23. 23.
    M. Yu. Gutkin, I. A. Ovid’ko, and A. G. Sheinerman, J. Phys.: Condens. Matter 15, 3539 (2003).ADSGoogle Scholar
  24. 24.
    J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).Google Scholar
  25. 25.
    A. L. Kolesnikova, M. Yu. Gutkin, S. A. Krasnitckii, and A. E. Romanov, Int. J. Solids Struct. 50, 1839 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. Yu. Gutkin
    • 1
    • 2
    • 3
  • S. A. Krasnitckii
    • 2
    • 3
  • A. M. Smirnov
    • 3
  • A. L. Kolesnikova
    • 1
    • 3
    • 4
  • A. E. Romanov
    • 3
    • 4
    • 5
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  3. 3.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  4. 4.Togliatti State UniversityTogliatti, Samara oblastRussia
  5. 5.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations