Advertisement

Physics of the Solid State

, Volume 57, Issue 5, pp 1023–1027 | Cite as

Thermal stability of hexaprismane C12H12 and octaprismane C16H16

  • S. A. Shostachenko
  • M. M. Maslov
  • V. S. Prudkovskii
  • K. P. Katin
Low-Dimensional Systems

Abstract

The results of quantum-mechanical calculations of elementary prismanes—hexaprismane C12H12 and octaprismane C16H16—have been presented. Their stability has been investigated in terms of the density functional theory and nonorthogonal tight-binding model, and the heights of potential barriers preventing isomerization and decay have been determined. It has been established based on the analysis of the molecular dynamics data and the hypersurface of the potential energy of these metastable compounds that hexaprismane and octaprismane have a rather high kinetic stability, which indicates the possibility of the formation of carbon polyprismanes for applications in microelectronics and nanoelectronics, power engineering, pharmaceutics, metrology, and information technologies.

Keywords

Cubane Density Func Tional Theory Prismanes Cyclob Utadiene Molecular Dynamic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Lewars, Modeling Marvels: Computational Anticipation of Novel Molecules (Springer-Verlag, Dordrecht, 2008), p. 185.CrossRefGoogle Scholar
  2. 2.
    T. J. Katz and N. Acton, J. Am. Chem. Soc. 95, 2738 (1973).CrossRefGoogle Scholar
  3. 3.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 3157 (1964).CrossRefGoogle Scholar
  4. 4.
    P. E. Eaton, Y. S. Or, and S. J. Branca, J. Am. Chem. Soc. 103, 2134 (1981).CrossRefGoogle Scholar
  5. 5.
    R. L. Disch and J. M. Schulman, J. Am. Chem. Soc. 110, 2102 (1988).CrossRefGoogle Scholar
  6. 6.
    R. M. Minyaev, V. I. Minkin, T. N. Gribanova, A. G. Starikov, and R. Hoffmann, J. Org. Chem. 68, 8588 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Kuzmin and W. W. Duley, Phys. Lett. A 374, 1374 (2010).zbMATHADSCrossRefGoogle Scholar
  8. 8.
    S. Kuzmin and W. W. Duley, Fullerenes, Nanotubes, Carbon Nanostruct. 20, 730 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Kuzmin and W. W. Duley, Phys. Rev. A: At., Mol., Opt. Phys. 83, 022507 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. Kuzmin and W. W. Duley, Ann. Phys. (Berlin) 525, 297 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    R. M. Minyaev, T. N. Gribanova, and V. I. Minkin, Dokl. Chem. 453 (1–2), 270 (2013).CrossRefGoogle Scholar
  12. 12.
    N. Pour, E. Altus, H. Basch, and S. Hoz, J. Phys. Chem. C 113, 3467 (2009).CrossRefGoogle Scholar
  13. 13.
    N. Pour, E. Altus, H. Basch, and S. Hoz, J. Phys. Chem. C 114, 10386 (2010).CrossRefGoogle Scholar
  14. 14.
    N. Pour, L. Itzhaki, B. Hoz, E. Altus, H. Basch, and S. Hoz, Angew. Chem., Int. Ed. 45, 5981 (2006).CrossRefGoogle Scholar
  15. 15.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53 (12), 2532 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  17. 17.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 153, 250 (1967).ADSCrossRefGoogle Scholar
  21. 21.
    E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A: At., Mol., Opt. Phys. 32, 3030 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    W. W. Wood, J. J. Erpenbeck, G. A. Backer, Jr., and J. D. Johnson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 011106 (2000).CrossRefGoogle Scholar
  23. 23.
    C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    J. Jellinek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    M. M. Maslov and K. P. Katin, Chem. Phys. 387, 66 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51 (3), 645 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    M. M. Maslov, Russ. J. Phys. Chem. B 4 (1), 170 (2010).CrossRefGoogle Scholar
  28. 28.
    M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8 (2), 152 (2014).CrossRefGoogle Scholar
  29. 29.
    X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zhuang, and X.-J. Ning, J. Chem. Phys. 132, 064103 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. A. Shostachenko
    • 1
  • M. M. Maslov
    • 1
    • 2
  • V. S. Prudkovskii
    • 3
    • 4
  • K. P. Katin
    • 1
    • 2
  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia
  2. 2.Research Institute for the Development of Scientific and Educational Potential of YouthMoscowRussia
  3. 3.Laboratoire d’analyse et d’architectures des systèmesCentre national de la recherche scientifique (LAAS-CNRS)Toulouse cedex 4France
  4. 4.Université de ToulouseToulouse cedex 6France

Personalised recommendations