Advertisement

Physics of the Solid State

, Volume 57, Issue 3, pp 586–591 | Cite as

Microstructure, elastic and inelastic properties of partially graphitized biomorphic carbons

  • T. S. Orlova
  • B. K. Kardashev
  • B. I. Smirnov
  • A. Gutierrez-Pardo
  • J. Ramirez-Rico
  • J. Martinez-Fernandez
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

The microstructural characteristics and amplitude dependences of the Young’s modulus E and internal friction (logarithmic decrement δ) of biocarbon matrices prepared by beech wood carbonization at temperatures T carb = 850–1600°C in the presence of a nickel-containing catalyst have been studied. Using X-ray diffraction and electron microscopy, it has been shown that the use of a nickel catalyst during carbonization results in a partial graphitization of biocarbons at T carb ≥ 1000°C: the graphite phase is formed as 50- to 100-nm globules at T carb = 1000°C and as 0.5- to 3.0-μm globules at T carb = 1600°C. It has been found that the measured dependences E(T carb) and δ(T carb) contain three characteristic ranges of variations in the Young’s modulus and logarithmic decrement with a change in the carbonization temperature: E increases and δ decreases in the ranges T carb < 1000°C and T carb > 1300°C; in the range 1000 < T carb < 1300°C, E sharply decreases and δ increases. The observed behavior of E(T carb) and δ(T carb) for biocarbons carbonized in the presence of nickel correlates with the evolution of their microstructure. The largest values of E are obtained for samples with T carb = 1000 and 1600°C. However, the samples with T carb = 1600°C exhibit a higher susceptibility to microplasticity due to the presence of a globular graphite phase that is significantly larger in size and total volume.

Keywords

Carb Carbonization Temperature Beech Wood Amplitude Dependence Logarithmic Decrement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Byrne and D. C. Nagle, Carbon 35(2), 267 (1997).CrossRefGoogle Scholar
  2. 2.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
  3. 3.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Domínguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1(1), 56 (2004).CrossRefGoogle Scholar
  4. 4.
    A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).CrossRefGoogle Scholar
  5. 5.
    L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  6. 6.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26(1), 18 (2011).CrossRefADSGoogle Scholar
  7. 7.
    M. T. Johnson, A. S. Childers, J. Ramírez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Gutiérrez-Pardo, J. Ramírez-Rico, A. R. de Arellano-López, and J. Martínez-Fernández, J. Mater. Sci. 49(22), 7688 (2014).CrossRefADSGoogle Scholar
  9. 9.
    H. M. Cheng, H. Endo, T. Okabe, K. Saito, and G. B. Zheng, J. Porous Mater. 6(3), 233 (1999).CrossRefGoogle Scholar
  10. 10.
    A. Oya and H. Marsh, J. Mater. Sci. 17(2), 309 (1982).CrossRefADSGoogle Scholar
  11. 11.
    R. Sinclair, T. Itoh, and R. Chin, Microsc. Microanal. 8(4), 288 (2002).CrossRefADSGoogle Scholar
  12. 12.
    M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, and A. B. Fuertes, J. Phys. Chem. C 111(27), 9749 (2007).CrossRefGoogle Scholar
  13. 13.
    F. J. Derbyshire, A. E. B. Presland, and D. L. Trimm, Carbon 13(2), 111 (1975).CrossRefGoogle Scholar
  14. 14.
    C. Yokokawa, K. Hosokawa, and Y. Takegami, Carbon 5(5), 475 (1967).CrossRefGoogle Scholar
  15. 15.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez, and J. Ramirez-Rico, Phys. Solid State 55(9), 1884 (2013).CrossRefADSGoogle Scholar
  16. 16.
    S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  17. 17.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martínez-Fernandez, Phys. Solid State 53(2), 276 (2011).CrossRefADSGoogle Scholar
  18. 18.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).CrossRefADSGoogle Scholar
  19. 19.
    I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Muha, Phys. Solid State 53(11), 2244 (2011).CrossRefADSGoogle Scholar
  20. 20.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, and M. C. Vera, Phys. Solid State 53(11), 2398 (2011).CrossRefADSGoogle Scholar
  21. 21.
    N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56(11), 2348 (2014).CrossRefADSGoogle Scholar
  22. 22.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(12), 2463 (2009).CrossRefGoogle Scholar
  23. 23.
    B. I. Smirnov, Yu. A. Burenkov, B. K. Kardashev, D. Singh, K. C. Goretta, and A. R. de Arellano-Lopez, Phys. Solid State 43(11), 2094 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. S. Orlova
    • 1
    • 2
  • B. K. Kardashev
    • 1
  • B. I. Smirnov
    • 1
  • A. Gutierrez-Pardo
    • 3
  • J. Ramirez-Rico
    • 3
  • J. Martinez-Fernandez
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Departamento de Fisica de la Materia Condensada—Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations