Physics of the Solid State

, Volume 57, Issue 2, pp 331–336 | Cite as

Ferroelectric properties of RbNbO3 and RbTaO3

Ferroelectricity

Abstract

Phonon spectra of cubic rubidium niobate and rubidium tantalate with the perovskite structure are calculated from first principles within the density functional theory. Based on the analysis of unstable modes in phonon spectra, symmetries of possible distorted phases are determined, their energies are calculated, and it is shown that R3m is the ground-state structure of RbNbO3. In RbTaO3, the ferroelectric instability is suppressed by zero-point lattice vibrations. For ferroelectric phases of RbNbO3, spontaneous polarization, piezoelectric, nonlinear optical, electro-optical, and other properties as well as the energy band gap in the LDA and GW approximations are calculated. The properties of rhombohedral RbNbO3 are compared with those of rhombohedral KNbO3, LiNbO3, and BaTiO3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Smolenskii and N. V. Kozhevnikova, Dokl. Akad. Nauk SSSR 76, 519 (1951).Google Scholar
  2. 2.
    H. D. Megaw, Acta Crystallogr. 5, 739 (1952).CrossRefGoogle Scholar
  3. 3.
    M. Serafin and R. Hoppe, J. Less-Common Met. 76, 299 (1980).CrossRefGoogle Scholar
  4. 4.
    M. Serafin and R. Hoppe, Angew. Chem. 90, 387 (1978).CrossRefGoogle Scholar
  5. 5.
    M. Serafin and R. Hoppe, Z. Anorg. Allg. Chem. 464, 240 (1980).CrossRefGoogle Scholar
  6. 6.
    J. A. Kafalas, in Proceedings of the 5th Materials Research Symposium, Gaithersburg, Maryland, United States, October 18–21, 1971 (NBS Spec. Publ., No. 364, 287 (1972)).Google Scholar
  7. 7.
    A. Reisman and F. Holtzberg, J. Phys. Chem. 64, 748 (1960).CrossRefGoogle Scholar
  8. 8.
    H. Brusset, H. Gillier-Pandraud, M. Chubb, and R. Mahé, Mater. Res. Bull. 11, 299 (1976).CrossRefGoogle Scholar
  9. 9.
    D. F. O’Kane, G. Burns, E. A. Giess, B. A. Scott, A. W. Smith, and B. Olson, J. Electrochem. Soc. 116, 1555 (1969).CrossRefGoogle Scholar
  10. 10.
    G. Burns, E. A. Giess, and D. F. O’Kane, US Patent No. 3 640 865 (1972).Google Scholar
  11. 11.
    I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy Environ. Sci. 5, 9034 (2012).CrossRefGoogle Scholar
  12. 12.
    K. Fukuda, I. Nakai, Y. Ebina, R. Ma, and T. Sasaki, Inorg. Chem. 46, 4787 (2007).CrossRefGoogle Scholar
  13. 13.
    The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated and other contributions. http://www.abinit.org/.
  14. 14.
    A. I. Lebedev, Phys. Solid State 52(7), 1448 (2010).CrossRefADSGoogle Scholar
  15. 15.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 41, 1227 (1990).CrossRefADSGoogle Scholar
  16. 16.
    Opium—Pseudopotential Generation Project. http://opium.sourceforge.net/.
  17. 17.
    A. I. Lebedev, Phys. Solid State 51(2), 362 (2009).CrossRefADSGoogle Scholar
  18. 18.
    M. Veithen, X. Gonze, and P. Ghosez, Phys. Rev. B: Condens. Matter 71, 125107 (2005).CrossRefADSGoogle Scholar
  19. 19.
    R. Yu and H. Krakauer. Phys. Rev. Lett. 74, 4067 (1995).CrossRefADSGoogle Scholar
  20. 20.
    A. I. Lebedev, Phys. Solid State 51(4), 802 (2009).CrossRefADSGoogle Scholar
  21. 21.
    A. I. Lebedev, Phys. Solid State 54(8), 1663 (2012).CrossRefADSGoogle Scholar
  22. 22.
    A. I. Lebedev, J. Alloys Compd. 580, 487 (2013).CrossRefGoogle Scholar
  23. 23.
    A. I. Lebedev, Phys. Solid State 56(5), 1039 (2014).CrossRefADSGoogle Scholar
  24. 24.
    D. Gompel, M. N. Tahir, M. Panthofer, E. Mugnaioli, R. Brandscheid, U. Kolb, and W. Tremel, J. Mater. Chem. A 2, 8033 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations