Physics of the Solid State

, Volume 57, Issue 2, pp 219–228 | Cite as

Positron spectroscopy of defects in submicrocrystalline nickel after low-temperature annealing

  • P. V. KuznetsovEmail author
  • Yu. P. Mironov
  • A. I. Tolmachev
  • Yu. S. Bordulev
  • R. S. Laptev
  • A. M. Lider
  • A. V. Korznikov


Using the method of measuring the positron lifetime spectra and Doppler broadening annihilation line spectroscopy, the annealing of defects in submicrocrystalline nickel produced by equal channel angular pressing has been studied. In as-prepared samples, the positrons are trapped by dislocation defects and vacancy complexes inside crystallites. The size of vacancy complexes decreases with increasing annealing temperature in the interval ΔT = 20–300°C. However, at T = 360°C, the complexes start growing again. The dependence of S-parameter on W-parameter derived from the Doppler broadening spectroscopy has two parts with different inclinations to axes that correspond to different types of primary centers of positron trapping in submicrocrystalline nickel. It has been elucidated that, at recovery stage in the temperature interval ΔT = 20–180°C, the main centers of positron trapping are low-angle boundaries enriched by impurities, while at in situ recrystallization stage in the temperature interval ΔT = 180–360°C, the primary centers of positron trapping are low-angle boundaries.


Scanning Tunnel Microscopy Equal Channel Angular Pressing High Angle Boundary Positron Lifetime Vacancy Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].Google Scholar
  2. 2.
    R. A. Andrievskii and A. M. Glezer, Phys.—Usp. 52(4), 315 (2009).CrossRefADSGoogle Scholar
  3. 3.
    H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
  4. 4.
    M. Lu, L. Dao, R. J. Asaro, J. T. M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
  5. 5.
    V. M. Segal, V. N. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev (Navuka i Tekhnika, Minsk, 1994) [in Russian].Google Scholar
  6. 6.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (Moscow Institute of Steel and Alloys, Moscow, 2005) [in Russian].Google Scholar
  7. 7.
    T. Knudsen, W. Q. Gao, A. Godfrey, Q. Liu, and N. Hansen, Metall. Mater. Trans. A 39, 430 (2008).CrossRefGoogle Scholar
  8. 8.
    A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials (FIZMATLIT, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors: Defect Studies (Springer-Verlag, Berlin, 1999).CrossRefGoogle Scholar
  10. 10.
    T. E. M. Staab, R. Krause-Rehberg, and B. Kieback, J. Mater. Sci. 34, 3833 (1999).CrossRefADSGoogle Scholar
  11. 11.
    J. Cizek, I. Prochazka, M. Cieslar, I. Stulikova, F. Chmelik, and R. K. Islamgaliev, Phys. Status Solidi A 191, 391 (2002).CrossRefADSGoogle Scholar
  12. 12.
    R. Wuerschum, B. Oberdorfer, E.-M. Steyskal, W. Sprengel, W. Puff, Ph. Pikart, Ch. Hugenschmidt, and R. Pippan, Physica B (Amsterdam) 407, 2670 (2012).CrossRefADSGoogle Scholar
  13. 13.
    B. Oberdorfer, E.-M. Steyskal, W. Sprengel, and W. Puff, Phys. Rev. Lett. 105, 146101 (2010).CrossRefADSGoogle Scholar
  14. 14.
    J. Cizek, I. Prochazka, M. Cieslar, R. Kuzel, J. Kuriplach, F. Chmelnik, I. Stulikova, F. Becvar, O. Melikhova, and R. K. Islamgaliev, Phys. Rev. B: Condens. Matter 65, 094106 (2002).CrossRefADSGoogle Scholar
  15. 15.
    P. V. Kuznetsov, I. V. Petrakova, T. V. Rakhmatulina, A. A. Baturin, and A. V. Korznikov, Zavod. Lab., Diagn. Mater. 78, 26 (2012).Google Scholar
  16. 16.
    P. V. Kuznetsov, I. V. Petrakova, O. G. Sanarova, and A. V. Korznikov, Deform. Razrushenie Mater., No. 1, 33 (2012).Google Scholar
  17. 17.
    A. V. Korznikov, G. F. Korznikova, M. M. Myshlyaev, R. Z. Valiev, D. Salimonenko, and O. Dimitrov, Phys. Met. Metallogr. 84(4), 413 (1997).Google Scholar
  18. 18.
    Yu. R. Kolobov, N. V. Girsova, K. V. Ivanov, G. P. Grabovetskaya, and O. B. Perevalova, Russ. Phys. J. 45(6), 547 (2002).CrossRefGoogle Scholar
  19. 19.
    Yu. S. Bordulev, R. S. Laptev, G. V. Garanin, and A. M. Lider, Sovrem. Naukoemkie Tekhnol., No. 8, 184 (2013).Google Scholar
  20. 20.
    Y. S. Bordulev, R. S. Laptev, V. N. Kudiyarov, and A. M. Lider, Adv. Mater. Res. 880, 93 (2014).CrossRefGoogle Scholar
  21. 21.
    R. S. Laptev, Y. S. Bordulev, V. N. Kudiyarov, A. M. Lider, and G. V. Garanin, Adv. Mater. Res. 880, 134 (2014).CrossRefGoogle Scholar
  22. 22.
    D. Giebel and J. Kansy, Phys. Procedia 35, 122 (2012).CrossRefADSGoogle Scholar
  23. 23.
    D. Giebel and J. Kansy, Mater. Sci. Forum 666, 138 (2010).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    S. Mantl and W. Triftshäuser, Phys. Rev. B: Solid State 17, 1645 (1978).CrossRefADSGoogle Scholar
  26. 26.
    L. Liszkay, C. Corbel, L. Baroux, P. Hautojarvi, M. Bayhan, A. W. Brinkman, and S. Tatarenko, Appl. Phys. Lett. 64, 1380 (1994).CrossRefADSGoogle Scholar
  27. 27.
    M. J. Puska and R. M. Nieminen, J. Phys. F: Met. Phys. 13, 333 (1983).CrossRefADSGoogle Scholar
  28. 28.
    G. Dlubek, O. Brummer, N. Meyendorf, P. Hautojarvi, A. Vehanen, and J. Yli-Kauppila, J. Phys. F: Met. Phys. 9, 1961 (1979).CrossRefADSGoogle Scholar
  29. 29.
    B. L. Shivachev, T. Troev, and T. Yoshiie, J. Nucl. Mater. 306, 105 (2002).CrossRefADSGoogle Scholar
  30. 30.
    E. V. Kozlov, N. A. Koneva, and N. A. Popova, Fiz. Mezomekh. 12(4), 93 (2009).Google Scholar
  31. 31.
    Z. Q. Yang, Mater. Lett. 60, 3846 (2006).CrossRefGoogle Scholar
  32. 32.
    M. Alatalo, B. Barbiellini, M. Hakala, H. Kauppinen, T. Korhonen, M. J. Puska, K. Saarinen, P. Hautojarvi, and R. M. Nieminen, Phys. Rev. B: Condens. Matter 54, 2397 (1996).CrossRefADSGoogle Scholar
  33. 33.
    S. V. Divinski, G. Reglitz, M. Wegner, M. Peterlechner, and G. Wilde, J. Appl. Phys. 115, 113503 (2014).CrossRefADSGoogle Scholar
  34. 34.
    A. G. Crocker, M. Doneghan, and K. W. Ingle, Philos. Mag. A 41, 21 (1980).CrossRefADSGoogle Scholar
  35. 35.
    V. I. Betekhtin, E. D. Tabachnikova, A. G. Kadomtsev, M. V. Narykova, and R. Lapovok, Tech. Phys. Lett. 37(8), 767 (2011).CrossRefADSGoogle Scholar
  36. 36.
    V. I. Betekhtin, A. G. Kadomtsev, V. Skienicka, and I. Saxi, Phys. Solid State 49(10), 1874 (2007).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. V. Kuznetsov
    • 1
    • 2
    Email author
  • Yu. P. Mironov
    • 1
  • A. I. Tolmachev
    • 1
  • Yu. S. Bordulev
    • 2
  • R. S. Laptev
    • 2
  • A. M. Lider
    • 2
  • A. V. Korznikov
    • 3
  1. 1.Institute of Strength Physics and Materials ScienceSiberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfaBashkortostan, Russia

Personalised recommendations