Physics of the Solid State

, Volume 57, Issue 2, pp 260–265 | Cite as

Hydrogen in palladium: Anharmonicity of lattice dynamics from first principles

  • M. P. Belov
  • A. B. Syzdykova
  • Yu. Kh. Vekilov
  • I. A. Abrikosov
Metals

Abstract

The interaction potentials of the palladium and hydrogen sublattices at different hydrogen concentrations have been obtained in terms of the density functional theory and ab initio pseudopotentials. It has been shown that the anharmonicity of this interaction depends on the hydrogen concentration. The phonon spectrum of palladium hydride PdH has been calculated in the harmonic approximation and taking into account the anharmonic effects. The temperature-dependent effective potential technique accounting for the anharmonic effects of lattice vibrations has been described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Graham, Philos. Trans. R. Soc. London 156, 399 (1866).CrossRefGoogle Scholar
  2. 2.
    I. Errea, M. Calandra, and F. Mauri, Phys. Rev. B: Condens. Matter 89, 064302 (2014).CrossRefADSGoogle Scholar
  3. 3.
    I. Errea, M. Calandra, and F. Mauri, Phys. Rev. Lett. 111, 177002 (2013).CrossRefADSGoogle Scholar
  4. 4.
    C. A. Mackliet, D. J. Gillespie, and A. I. Schindler, J. Phys. Chem. Solids 37(4), 379 (1976).CrossRefADSGoogle Scholar
  5. 5.
    B. Stritzker, and W. Buckel, Z. Phys. 257, 1 (1972).CrossRefADSGoogle Scholar
  6. 6.
    J. E. Schirber and C. J. M. Northrup, Phys. Rev. B: Solid State 10, 3818 (1974).CrossRefADSGoogle Scholar
  7. 7.
    D. K. Ross, V. E. Antonov, E. L. Bokhenkov, A. I. Kolesnikov, E. G. Ponyatovsky, and J. Tomkinson, Phys. Rev. B: Condens. Matter 58, 2591 (1998).CrossRefADSGoogle Scholar
  8. 8.
    A. I. Kolesnikov, V. E. Antonov, V. K. Fedotova, G. Grossec, A. S. Ivanov, and F. E. Wagner, Physica B (Amsterdam) 316–317, 158 (2002).CrossRefGoogle Scholar
  9. 9.
    C. Elsässer, K. M. Ho, C. T. Chan, and M. Fähnle, Phys. Rev. B: Condens. Matter 44, 10377 (1991).CrossRefADSGoogle Scholar
  10. 10.
    C. Elsässer, K. M. Ho, C. T. Chan, and M. Fähnle, J. Phys.: Condens. Matter 4, 5207 (1992).ADSGoogle Scholar
  11. 11.
    M. P. Belov, E. I. Isaev, and Yu. Kh. Vekilov, J. Alloys Compd. 509, S857 (2011).CrossRefGoogle Scholar
  12. 12.
    J. J. Rush, J. M. Rowe, and D. Richter, Z. Phys. B: Condens. Matter 55, 283 (1984).CrossRefADSGoogle Scholar
  13. 13.
    P. Souvatzis, O. Eriksson, M. I Katsnelson, and S. P. Rudin, Phys. Rev. Lett. 100, 095901 (2008).CrossRefADSGoogle Scholar
  14. 14.
    J. Hooton, Philos. Mag. 46, 422 (1955).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    O. Hellman, I. A. Abrikosov, and S. I. Simak, Phys. Rev. B: Condens. Matter 84, 180301 (2011).CrossRefADSGoogle Scholar
  16. 16.
    O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Phys. Rev. B: Condens. Matter 87, 104111 (2013).CrossRefADSGoogle Scholar
  17. 17.
    G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).CrossRefADSGoogle Scholar
  18. 18.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  19. 19.
    S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).CrossRefADSGoogle Scholar
  20. 20.
    S. Nosé, J. Chem. Phys. 81, 511 (1984).CrossRefADSGoogle Scholar
  21. 21.
    S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991).CrossRefADSGoogle Scholar
  22. 22.
    D. M. Bylander and L. Kleinman, Phys. Rev. B: Condens. Matter 46, 13756 (1992).CrossRefADSGoogle Scholar
  23. 23.
    G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).CrossRefADSGoogle Scholar
  24. 24.
    N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999).CrossRefADSGoogle Scholar
  25. 25.
    M. Methfessel and A. T. Paxton, Phys. Rev. B: Condens. Matter 40, 3616 (1989).CrossRefADSGoogle Scholar
  26. 26.
    B. M. Klein and R. E. Cohen, Phys. Rev. B: Condens. Matter 45, 12405 (1992).CrossRefADSGoogle Scholar
  27. 27.
    E. Schirber and B. Morosin, Phys. Rev. B: Solid State 12, 117 (1975).CrossRefADSGoogle Scholar
  28. 28.
    A. Shabaev, D. A. Papaconstantopoulos, M. J. Mehl, and N. Bernstein, Phys. Rev. B: Condens. Matter 81, 184103 (2010).CrossRefADSGoogle Scholar
  29. 29.
    H. Krimmel, L. Schimmele, C. Elsasser, and M. Fahnle, J. Phys.: Condens. Matter 6, 7679 (1994).ADSGoogle Scholar
  30. 30.
    X. W. Wang, S. G. Louie, and M. L. Cohen, Phys. Rev. B: Condens. Matter 40, 5822 (1989).CrossRefADSGoogle Scholar
  31. 31.
    D. P. Smith, Hydrogen in Metals (Chicago University Press, Chicago, United States, 1948).Google Scholar
  32. 32.
    C. R. Cupp, Prog. Met. Phys. 4, 105 (1953).CrossRefGoogle Scholar
  33. 33.
    A. Kolesnikov, I. Natkaniec, V. Antonov, I. Belash, V. Fedotov, J. Krawczyk, J. Mayer, and E. Ponyatovsky, Physica B (Amsterdam) 174, 257 (1991).CrossRefADSGoogle Scholar
  34. 34.
    R. Sherman, H. K. Birnbaum, J. A. Holy, and M. V. Klein, Phys. Lett. A 62(5), 353 (1977).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. P. Belov
    • 1
    • 2
  • A. B. Syzdykova
    • 1
    • 3
  • Yu. Kh. Vekilov
    • 1
  • I. A. Abrikosov
    • 2
  1. 1.National University of Science and Technology “MISIS,”MoscowRussia
  2. 2.Linköping UniversityLinköpingSweden
  3. 3.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations