Physics of the Solid State

, Volume 57, Issue 1, pp 115–118 | Cite as

On the positions of impurity modes in phonon spectra of metallic alloys

Lattice Dynamics
  • 30 Downloads

Abstract

Positions of local and quasi-local impurity frequencies in metallic alloys have been considered. It has been shown that the differences between the frequencies calculated in the isotopic approximation and the experimental values can be explained not only by a change in the force constants (force shifts), as it is usually done, but also by a change in the effective mass of the oscillations (mass shifts). Comparison of the calculations with the experimental data demonstrates that the main role in the difference between the frequencies calculated in the isotopic approximation and the experimental values is played by the mass shifts rather than the force shifts, at least for local modes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963; Mir, Moscow, 1965).Google Scholar
  2. 2.
    I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).Google Scholar
  3. 3.
    A. P. Zhernov, N. A. Chernoplekov, and E. Mrozan, Metals with Nonmagnetic Impurity Atoms (Energoatomizdat, Moscow, 1992) [in Russian].Google Scholar
  4. 4.
    I. M. Lifshitz, J. Phys. (Moscow) 7, 249 (1943).MATHMathSciNetGoogle Scholar
  5. 5.
    I. M. Lifshitz, Sov. Phys.-Usp. 7, 549 (1964).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Yu. M. Kagan and Ya. A. Iosilevskii, Sov. Phys. JETP 18(2), 562 (1962).Google Scholar
  7. 7.
    R. Brout and W. Visscher, Phys. Rev. Lett. 9, 54 (1962).ADSCrossRefGoogle Scholar
  8. 8.
    H. V. Culbert and R. P. Huebener, Localized Excitations in Solids (Plenum, New York, 1968).Google Scholar
  9. 9.
    V. Mozer, K. Otnes, and V. M. Myers, Phys. Rev. Lett. 8, 278 (1962).ADSCrossRefGoogle Scholar
  10. 10.
    M. G. Zemlyanov, V. A. Somenkov, and N. A. Chernoplekov, Sov. Phys. JETP 25(3), 436 (1967).ADSGoogle Scholar
  11. 11.
    M. G. Zemlyanov and N. A. Chernoplekov, Sov. Phys. JETP 22, 315 (1965).Google Scholar
  12. 12.
    G. F. Syrykh, M. G. Zemlyanov, N. F. Chernoplekov, and B. I. Savel’ev, Sov. Phys. JETP 54(1), 165 (1982).Google Scholar
  13. 13.
    Yu. M. Kagan, in Proceedings of the School on Theory of Defects in Crystals, Tbilisi, 1966, p. 93.Google Scholar
  14. 14.
    A. S. Barker and A. J. Slevers, Rev. Mod. Phys. 47, 2 (1975).CrossRefGoogle Scholar
  15. 15.
    R. M. Niclow, P. R. Vijayaraghavan, and H. G. Smith, Phys. Rev. Lett. 20, 1245 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    I. Natkanies, K. Palinski, and J. A. Janik, in Proceedings of Symposium of Neutron Inelastic Scattering, International Atomic Energy Agency, Vienna, 1968, p. 65.Google Scholar
  17. 17.
    Y. L. Shitikov, A. R. Zhernov, and M. G. Zemlyanov, J. Phys. C: Solid State Phys. 16, 2471 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    I. Natkanies, K. Palinski, and A. Bajorek, Phys. Lett. A 24, 517 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    G. F. Syrykh, A. R. Zhernov, and M. G. Zemlyanov, Phys. Status Solidi B 79, 105 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    G. F. Syrykh, Candidate’s Dissertation (Kurchatov Institute of Atomic Energy, Moscow, 1985).Google Scholar
  21. 21.
    G. F. Syrykh, A. P. Zhernov, and M. G. Zemlyanov, Sov. Phys. JETP 43(1), 183 (1976).ADSGoogle Scholar
  22. 22.
    N. A. Chernoplecov, G. Kh. Panova, and M. G. Zemlyanov, Phys. Status Solidi B 20, 767 (1967).ADSCrossRefGoogle Scholar
  23. 23.
    V. A. Somenkov, V. P. Glazkov, and M. S. Blanter, Phys. Met. Metallogr. 101(1), 159 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations