Physics of the Solid State

, Volume 56, Issue 11, pp 2166–2172 | Cite as

Two modes of laser lithography fabrication of three-dimensional submicrometer structures

  • I. I. Shishkin
  • K. B. Samusev
  • M. V. Rybin
  • M. F. Limonov
  • R. V. Kiyan
  • B. N. Chichkov
  • Yu. S. Kivshar’
  • P. A. Belov
Dielectrics

Abstract

The modes of laser lithography fabrication of three-dimensional submicrometer structures have been studied. The method is based on the effect of threshold two-photon polymerization of a photosensitive material at the laser beam focus. To determine the lithograph workspace in the coordinates “laser power-speed of the sample displacement with respect to the laser focus,” a series of photonic crystals with the woodpile structure is prepared. Two methods for fabricating three-dimensional structures, i.e., raster scanning and vector graphics (or the vector method) are analyzed in detail. The advantages of the vector method for fabricating periodic structures are demonstrated using crystals of inverted yablonovite as an example. The prepared samples are studied by scanning electron microscopy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature (London) 412, 697 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, ACS Nano 2, 2257 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. Göppert-Mayer, Ann. Phys. 401, 273 (1931).CrossRefGoogle Scholar
  5. 5.
    J. H. Strickler and W. W. Webb, in Rochester, CAN-AM (International Society for Optics and Photonics, Bellingham, Washington, 1991), pp. 107–118.Google Scholar
  6. 6.
    D. A. Parthenopoulos and P. M. Rentzepis, Science (Washington) 245, 843 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, Opt. Express 15, 3426 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, New Jersey, United States, 2008).Google Scholar
  10. 10.
    C. De Marco, A. Gaidukeviciute, R. Kiyan, S. M. Eaton, M. Levi, R. Osellame, B. N. Chichkov, and S. Turri, Langmuir 29, 426 (2013).CrossRefGoogle Scholar
  11. 11.
    S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, Appl. Phys. Lett. 87, 154108 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, Yu. S. Kivshar’, A. Gaidukeviichute, R. V. Kiyan, and B. N. Chichkov, JETP Lett. 95(9), 457 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    I. I. Shishkin, K. Samusev, M. Rybin, M. Limonov, Yu. Kivshar’, A. Gaidukeviichute, R. Kiyan, and B. Chichkov, Phys. Solid State 54(10), 1975 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. I. Shishkin
    • 1
    • 2
  • K. B. Samusev
    • 1
    • 2
  • M. V. Rybin
    • 1
    • 2
  • M. F. Limonov
    • 1
    • 2
  • R. V. Kiyan
    • 3
  • B. N. Chichkov
    • 3
  • Yu. S. Kivshar’
    • 1
    • 4
  • P. A. Belov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Laser Zentrum HannoverHannoverGermany
  4. 4.Nonlinear Physics Centre, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations