Physics of the Solid State

, Volume 56, Issue 10, pp 2135–2145 | Cite as

Edge-modified zigzag-shaped graphene nanoribbons: Structure and electronic properties

  • V. A. Saroka
  • K. G. Batrakov
  • L. A. Chernozatonskii
Graphenes

Abstract

Control of the band gap of graphene nanoribbons is an important problem for the fabrication of effective radiation detectors and transducers operating in different frequency ranges. The periodic edge-modified zigzag-shaped graphene nanoribbon (GNR) provides two additional parameters for controlling the band gap of these structures, i.e., two GNR arms. The dependence of the band gap E g on these parameters is investigated using the π-electron tight-binding method. For the considered nanoribbons, oscillations of the band gap E g as a function of the nanoribbon width are observed not only in the case of armchair-edge graphene nanoribbons (as for conventional graphene nanoribbons) but also for zigzag GNR edges. It is shown that the change in the band gap E g due to the variation in the length of one GNR arm is several times smaller than that due to the variation in the nanoribbon width, which provides the possibility for a smooth tuning of the band gap in the energy spectrum of the considered graphene nanoribbons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. B. Sorokin and L. A. Chernozatonskii, Phys.—Usp. 56(2), 105 (2013).CrossRefADSGoogle Scholar
  2. 2.
    M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. J. 65, 1920 (1996).CrossRefADSGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).CrossRefADSGoogle Scholar
  4. 4.
    V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6, 2748 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. Ezawa, Phys. Rev. B: Condens. Matter 73, 045432 (2006).CrossRefADSGoogle Scholar
  6. 6.
    D. A. Areshkin, D. Gunlycke, and C. T. White, Nano Lett. 7, 204 (2007).CrossRefADSGoogle Scholar
  7. 7.
    C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Lett. 7, 825 (2007).CrossRefADSGoogle Scholar
  8. 8.
    D. Gunlycke and C. White, Phys. Rev. B: Condens. Matter 77, 115116 (2008).CrossRefADSGoogle Scholar
  9. 9.
    K. A. Ritter and J. W. Lyding, Nat. Mater. 8, 235 (2009).CrossRefADSGoogle Scholar
  10. 10.
    M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).CrossRefADSGoogle Scholar
  11. 11.
    M. Koch, F. Ample, C. Joachim, and L. Grill, Nat. Nanotechnol. 7, 713 (2012).CrossRefADSGoogle Scholar
  12. 12.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature (London) 458, 877 (2009).CrossRefADSGoogle Scholar
  13. 13.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Nature (London) 466, 470 (2010).CrossRefADSGoogle Scholar
  14. 14.
    W. Li and R. Tao, J. Phys. Soc. Jpn. 81, 024704 (2012).CrossRefADSGoogle Scholar
  15. 15.
    W. J. Yu and X. Duan, Sci. Rep. 3, 1248 (2013).ADSGoogle Scholar
  16. 16.
    S. Bhattacharya and S. Mahapatra, Physica E (Amsterdam) 44, 1127 (2012).CrossRefADSGoogle Scholar
  17. 17.
    X. Zhong, R. Pandey, and S. P. Karna, Carbon 50, 784 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. C. Huang, C. P. Chang, and M. F. Lin, J. Appl. Phys. 104, 103314 (2008).Google Scholar
  19. 19.
    M. Topsakal, V. M. K. Bagci, and S. Ciraci, Phys. Rev. B: Condens. Matter 81, 205437 (2010).CrossRefADSGoogle Scholar
  20. 20.
    W. Jaskolski, A. Ayuela, M. Pelc, H. Santos, and L. Chico, Phys. Rev. B: Condens. Matter 83, 235424 (2011).CrossRefADSGoogle Scholar
  21. 21.
    Z. F. Wang, Q. W. Shi, Q. Li, X. Wang, J. G. Hou, H. Zheng, Y. Yao, and J. Chen, Appl. Phys. Lett. 91, 053109 (2007).CrossRefADSGoogle Scholar
  22. 22.
    H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B: Condens. Matter 78, 245402 (2008).CrossRefADSGoogle Scholar
  23. 23.
    M. Topsakal, H. Sevincli, and S. Ciraci, Appl. Phys. Lett. 92, 173118 (2008).CrossRefADSGoogle Scholar
  24. 24.
    S. Ihnatsenka, I. Zozoulenko, and G. Kirczenow, Phys. Rev. B: Condens. Matter 80, 155415 (2009).CrossRefADSGoogle Scholar
  25. 25.
    L. A. Chernozatonskii, P. B. Sorokin, and J. W. Brüning, Appl. Phys. Lett. 91, 183103 (2007).CrossRefADSGoogle Scholar
  26. 26.
    A. K. Singh and B. I. Yakobson, Nano Lett. 9, 1540 (2009).CrossRefADSGoogle Scholar
  27. 27.
    L. A. Chernozatonskii and P. B. Sorokin, J. Phys. Chem. C 114, 3225 (2010).CrossRefGoogle Scholar
  28. 28.
    E. Costa Girão, L. Liang, E. Cruz-Silva, A. G. S. Filho, and V. Meunier, Phys. Rev. Lett. 107, 135501 (2011).CrossRefADSGoogle Scholar
  29. 29.
    E.C. Girão, E. Cruz-Silva, and V. Meunier, ACS Nano 6, 6483 (2012).CrossRefGoogle Scholar
  30. 30.
    R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), p. 276.CrossRefGoogle Scholar
  31. 31.
    B. Partoens and F. Peeters, Phys. Rev. B: Condens. Matter 74, 075404 (2006).CrossRefADSGoogle Scholar
  32. 32.
    R. M. Ribeiro, V. M. Pereira, N. M. R. Peres, P. R. Briddon, and A. H. Castro Neto, New J. Phys. 11, 115002 (2009).CrossRefADSGoogle Scholar
  33. 33.
    R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Phys. Rev. B: Condens. Matter 46, 1804 (1992).CrossRefADSGoogle Scholar
  34. 34.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefMATHADSGoogle Scholar
  35. 35.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).CrossRefADSGoogle Scholar
  36. 36.
    Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).CrossRefADSGoogle Scholar
  37. 37.
    A. Akhmerov and C. Beenakker, Phys. Rev. B: Condens. Matter 77, 085423 (2008).CrossRefADSGoogle Scholar
  38. 38.
    T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii, Nat. Commun. 5, 1 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. A. Saroka
    • 1
  • K. G. Batrakov
    • 1
  • L. A. Chernozatonskii
    • 2
  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations