Advertisement

Physics of the Solid State

, Volume 56, Issue 9, pp 1833–1839 | Cite as

Near field of terahertz radiation transmitted through a lateral non-centrosymmetric grating

  • E. L. Ivchenko
  • M. I. Petrov
Optical Properties

Abstract

The transmission of a terahertz (THz) wave through a grating of metallic strips deposited on a flat surface of a dielectric medium has been considered. It has been assumed that the unit cell of the lateral grating does not have a spatial inversion center and the grating period is small compared to the radiation wavelength. The found amplitudes and phases of the spatial harmonics of the transmitted wave in the near field have been used to calculate the components of the tensor of asymmetry parameters responsible for the generation of photocurrents in a doped quantum well embedded in the non-centrosymmetric system under consideration. It has been found that, at a strip height greater than the skin depth, the parameters of the transmitted spatial harmonics are nearly independent of the height. It has been shown that the metallic grating exhibits strong birefringence, and the radiation polarized either circularly or linearly at an angle of 45° with respect to the principal axes of the lateral grating induces superposition of photocurrents owing to the circular or linear electronic ratchet effects.

Keywords

Transmitted Wave Terahertz Radiation Grating Period Spatial Harmonic Fourier Harmonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Belinicher and B. I. Sturman, Sov. Phys.—Usp. 23(3), 199 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    B. I. Sturman and V. M. Fridkin, Photogalvanic Effect in Media without the Center of Symmetry and Related Phenomena (Nauka, Moscow, 1992) [in Russian].Google Scholar
  3. 3.
    P. Reimann, Phys. Rep. 361, 57 (2002).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ratchets and Brownian Motors: Basics, Experiments and Applications, Ed. by H. Linke, Appl. Phys. A: Mater. Sci. Process. 75 (Spec. Issue), 167352 (2002).Google Scholar
  5. 5.
    A. Lorke, S. Wimmer, B. Jager, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Physica B (Amsterdam) 249–251, 312 (1998).CrossRefGoogle Scholar
  6. 6.
    A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, Appl. Phys. Lett. 79, 1357 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    S. Sassine, Yu. Krupko, J.-C. Portal, Z. D. Kvon, R. Murali, K. P. Martin, G. Hill, and A. D. Wieck, Phys. Rev. B: Condens. Matter 78, 045431 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Chepelianskii, M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, Eur. Phys. J. B 56, 323 (2007); A. D. Chepelianskii, M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys, 78, 041127 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    L. Ermann and D. L. Shepelyansky, Eur. Phys. J. B 79, 357 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    P. Olbrich, E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D. Ganichev, Phys. Rev. Lett. 103, 090603 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Phys. Rev. B: Condens. Matter 83, 165320 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    E. L. Ivchenko and S. D. Ganichev, JETP Lett. 93(11), 673 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Nalitov, L. E. Golub, and E. L. Ivchenko, Phys. Rev. B: Condens. Matter 86, 115301 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquillat, and W. Knap, Appl. Phys. Lett. 99, 243504 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    T. Otsuji, T. Watanabe, S. A. Boubanga Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, IEEE Trans. Terahertz Sci. Technol. 3, 63 (2013).CrossRefGoogle Scholar
  16. 16.
    V. V. Popov, Appl. Phys. Lett. 102, 253504 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Yuye Wang, H. Minamide, H. Ito, and T. Otsuji, IEEE Sens. J. 13, 89 (2013).CrossRefGoogle Scholar
  18. 18.
    L. Li, J. Opt. Soc. Am. A 13(9), 1870 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    Diffractive Optics for Industrial and Commercial Applications, Ed. by J. Turunen and F. Wyrowski (Wiley, New York, 1998), p. 440.Google Scholar
  20. 20.
    D. V. Fateev, V. V. Popov, and M. S. Shur, Semiconductors 44(11), 1406 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, Sang-Hyun Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B: Condens. Matter 86, 235147 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    P. Olbrich, C. Drexler, L. E. Golub, S. N. Danilov, V. A. Shalygin, R. Yakimova, S. Lara-Avila, S. Kubatkin, B. Redlich, R. Huber, and S. D. Ganichev, Phys. Rev. B: Condens. Matter 88, 245425 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Academic University—Nanotechnology Research and Education Centre of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations