Physics of the Solid State

, Volume 56, Issue 7, pp 1302–1309 | Cite as

Ab initio calculations of the electron-phonon interaction and characteristics of large polarons in rutile and anatase

  • V. P. ZhukovEmail author
  • E. V. Chulkov


The calculations of the electron-phonon interaction and some characteristics of excited electrons near the bottom of the conduction band of titanium dioxide in the structure of anatase and rutile have been performed. The Eliashberg function, the imaginary and real parts of the self-energy potential, as well as the band and polaron masses and width of the photoemission line, have been calculated. It has been shown that the electron-phonon interaction is primarily determined by the interaction with optical photons. Moderate values of the polaron mass (<2m e ) correspond to large polarons. The calculated values of the spectral line width are significantly less than those observed in the experiment. Arguments have been presented in support of the assumption that the main contribution to the spectral line width corresponds to the interaction of electrons with the potential of randomly arranged oxygen vacancies.


Rutile Conduction Band Oxygen Vacancy Dyson Equation Phonon Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Hoffmann, S. Martin, W. Choi, and D. Bahnemannt, Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  2. 2.
    M. Henderson, Surf. Sci. Rep. 66, 185 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Gupta and M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011).CrossRefGoogle Scholar
  4. 4.
    S. G. Kumar and L. G. Devi, J. Phys. Chem. A 115, 13211 (2011).CrossRefGoogle Scholar
  5. 5.
    O. K. Varghese, M. Paulose, and C. A. Grimes, Nat. Nanotechnol. 4, 592 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    D. Kuang, J. Brillet, P. Chen, M. Takata, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Gratzel, ACS Nano 2, 1113 (2008).CrossRefGoogle Scholar
  7. 7.
    H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Nat. Mater. 3, 221 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    J. Jacimovic, C. Vaju, A. Magrez, H. Berger, L. Forro, R. Gaal, V. Cerovski, and R. Zikic, Europhys. Lett. 99, 57005 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. Moser, L. Moreschini, J. Jacimovic, O. S. Barisic, H. Berger, A. Magrez, Y. J. Chang, K. S. Kim, A. Bostwick, E. Rotenberg, L. Forro, and M. Grioni, Phys. Rev. Lett. 110, 196403 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    E. Hendry, F. Wang, J. Shan, T. F. Heinz, and M. Bonn, Phys. Rev. B: Condens. Matter 69, 081101 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    C. Persson and A da Silva, Appl. Phys. Lett. 86, 321912 (2005).CrossRefGoogle Scholar
  12. 12.
    G. Mahan, Many-Particle Physics (Plenum, New York, 1990).CrossRefGoogle Scholar
  13. 13.
    V. P. Zhukov, E. Chulkov, and P. Echenique, Phys. Rev. B: Condens. Matter 65, 115116 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    V. P. Zhukov, E. Chulkov, and P. Echenique, Phys. Rev. Lett. 93, 096401 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    G. Grimvall, The Electron-Phonon Interactions in Metals (North-Holland, Amsterdam, 1981).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1969; Butterworth-Heinemann, Oxford, 1976).Google Scholar
  17. 17.
    S. Baroni, S. de Gironcoli, and A. D. Corso, Rev. Mod. Phys. 73, 515 (2001).ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    V. Zhukov and E. Chulkov, J. Phys.: Condens. Matter 22, 435802 (2010).ADSGoogle Scholar
  20. 20.
    A. Eiguren, B. Hellsing, E. Chulkov, and P. M. Echenique, Phys. Rev. B: Condens. Matter 67, 235423 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    I. Sklyadneva, E. V. Chulkov, W.-D. Schone, V. Silkin, R. Keyling, and P. Echenique, Phys. Rev. B: Condens. Matter 71, 174302 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    Ch. Brun, I.-P. Hong, F. Parrhey, I. Cklyadneva, R. Hied, P. M. Echenique, K. Bohnen, E. V. Chulkov, and W.-D. Schneider, Phys. Rev. Lett. 102, 207002 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Solid State ChemistryUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Donostia International Physics Center (DIPC)Donostia-San Sebastián, Basque CountrySpain
  3. 3.Tomsk State UniversityTomskRussia

Personalised recommendations