Physics of the Solid State

, Volume 56, Issue 7, pp 1494–1500 | Cite as

Modulation polarimetry of thermoelasticity induced by thermal radiation in a glass

  • I. E. Matyash
  • I. A. Minailova
  • O. N. Mishchuk
  • B. K. SerdegaEmail author
Thermal Properties


The phenomenon of thermoelasticity induced by an external thermal radiation in a model glass sample was investigated experimentally. The thermoelasticity was detected by the optical polarization method used in studies of the photoelastic effect and modified by the probe radiation polarization modulation technique. This technique made it possible to increase the sensitivity of the measurement system to the strain state of a solid so that it became possible to detect thermoelasticity under conditions where the temperature gradient across the sample reaches a few fractions of a degree. The spatial and temporal changes of the mechanical stresses induced in the sample by a nonuniform radiation heating and, consequently, by a heat flux were measured. The coordinate functions of temperature as solutions of the inverse problem of thermoelasticity were obtained using the graphical integration of the experimental characteristics. The characteristic parameters of some of the heat transfer mechanisms were determined by analyzing the experimental characteristics of the kinetics and dynamics of mechanical stresses.


Heat Flux Probe Beam Black Body Radiation Heating Optical Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Malyavina, Heat Loss of the Building: A Reference Book (Avaks-Press, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    M. A. Arguchintseva and N. N. Pilyugin, Prikl. Mekh. Tekh. Fiz. 43(5), 55 (2002).zbMATHGoogle Scholar
  3. 3.
    N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Machining and Welding (Mashinostroenie, Moscow, 1975; Mir, Moscow, 1978).Google Scholar
  4. 4.
    N. V. Vovnenko, B. A. Zimin, and Yu. V. Sud’enkov, Tech. Phys. 56(7), 968 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Q. Qiu and C. L. Tien, Int. J. Heat Mass Transfer 37(17), 2789 (1994).CrossRefGoogle Scholar
  6. 6.
    A. I. Gubin and Yu. A. Malaya, Tekh. Teplofiz. Prom. Teploenerg., No. 3, 72 (2011).Google Scholar
  7. 7.
    O. R. Gachkevich, R. F. Terlets’kii, and M. B. Brukhal’, Mat. Metodi Fiz.-Mekh. Polya 51(3), 202 (2008).Google Scholar
  8. 8.
    K. L. Muratikov, Tech. Phys. 69(7), 792 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Svanadze, Tech. Mech. 32(2–5), 564 (2012).Google Scholar
  10. 10.
    A. L. Burka and P. M. Likhanskii, Prikl. Mekh. Tekh. Fiz. 42(3), 101 (2001).zbMATHGoogle Scholar
  11. 11.
    R. F. Terletskii and O. P. Turii, Mat. Metody. Fiz.-Mekh. Polya 49(3), 177 (2006).Google Scholar
  12. 12.
    A. Ya. Aleksandrov and M. Kh. Akhmetdzyanov, Polarization Optical Methods of the Mechanics of a Deformed Body (Nauka, Moscow, 1973) [in Russian].Google Scholar
  13. 13.
    S. N. Jasperson and S. E. Sahnatterly, Rev. Sci. Instrum. 40(6), 761 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    E. V. Nikitenko and B. K. Serdega, in Optoelectronics and Semiconductor Technology (Naukova Dumka, Kiev, 1998), Vol. 33, p. 102 [in Russian].Google Scholar
  15. 15.
    K. G. Gusev, A. D. Filatov, and A. P. Sopolev, Polarization Modulation (Sovetskoe Radio, Moscow, 1974) [in Russian].Google Scholar
  16. 16.
    A. Gerard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).Google Scholar
  17. 17.
    Ya. A. Fofanov, I. V. Pleshakov, and I. M. Sokolov, Nauchn. Priborostr. 20(2), 3 (2010).Google Scholar
  18. 18.
    A. D. Kovalenko, Introduction to Thermoelasticity (Naukova Dumka, Kiev, 1965) [in Russian].Google Scholar
  19. 19.
    I. E. Matyash, I. A. Minailova, O. H. Mishchuk, and B. K. Serdega, Phys. Solid State 55(5), 1087 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. E. Matyash
    • 1
  • I. A. Minailova
    • 1
  • O. N. Mishchuk
    • 1
  • B. K. Serdega
    • 1
    Email author
  1. 1.Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations