Physics of the Solid State

, Volume 56, Issue 7, pp 1467–1471 | Cite as

Simulation of metastable CL-20 cluster structures

Atomic Clusters

Abstract

Ensembles of C6H6N12O12 (CL-20) clusters with different types of intercluster bonds have been studied theoretically. The stability of such cluster has been investigated and the heights of potential barriers preventing their decomposition or isomerization have been determined by means of quantum-mechanical calculations based on the density functional theory and nonorthogonal tight-binding model. From the analysis of molecular dynamics data and potential energy hypersurface of these metastable configurations, it has been established that dimers and tetramers of CL-20 clusters are characterized by sufficiently high kinetic stability, which suggests the theoretical possibility of creation of high-energy covalent crystals on their basis.

Keywords

Fullerene Cluster Structure Prismanes Covalent Crystal Molecular Dynamic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Sysolyatin, A. A. Lobanova, Yu. T. Chernikova, and G. V. Sakovich, Usp. Khim. 74, 830 (2005).CrossRefGoogle Scholar
  2. 2.
    Condensed Energy Systems: Concise Encyclopedic Handbook Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000), p. 127 [in Russian].Google Scholar
  3. 3.
    S. Okovytyy, Y. Kholod, M. Qasim, H. Fredrickson, and J. Leszczynski, J. Phys. Chem. A 109, 2964 (2005).CrossRefGoogle Scholar
  4. 4.
    U. R. Nair, R. Sivabalan, G. M. Gore, M. Geetha, S. N. Asthana, and H. Singh, Combust., Explos. Shock Waves 41(2), 121 (2005).CrossRefGoogle Scholar
  5. 5.
    J. Xu, Y. Tian, Y. Liu, H. Zhang, Y. Shu, and J. Sun, J. Cryst. Growth 354, 13 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    T. P. Russell, P. J. Miller, G. J. Piermarini, and S. Block, J. Phys. Chem. 96, 5509 (1992).CrossRefGoogle Scholar
  7. 7.
    X.-J. Xu, W.-H. Zhu, and H.-M. Xiao, J. Phys. Chem. B 111, 2090 (2007).CrossRefGoogle Scholar
  8. 8.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).CrossRefGoogle Scholar
  9. 9.
    T. Yildirim, P. M. Gehring, D. A. Neumann, P. E. Eaton, and T. Emrick, Carbon 36, 809 (1998).CrossRefGoogle Scholar
  10. 10.
    M. M. Maslov, Russ. J. Phys. Chem. B 4(1), 170 (2010).CrossRefGoogle Scholar
  11. 11.
    B. Herrera, F. Valencia, A. H. Romero, M. Kiwi, R. Ramírez, and A. Toro-Labbé, J. Mol. Struct.: THEOCHEM 769, 183 (2006).CrossRefGoogle Scholar
  12. 12.
    P. Liu, H. Cui, and G. W. Yang, Cryst. Growth Des. 8, 581 (2008).CrossRefGoogle Scholar
  13. 13.
    S. V. Kozyrev and V. V. Rotkin, Semiconductors 27(9), 777 (1993).ADSGoogle Scholar
  14. 14.
    H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano, and B. von Issendorff, Nature (London) 407, 60 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    L. A. Openov, I. V. Davydov, and A. I. Podlivaev, JETP Lett. 85(7), 339 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. I. Podlivaev and L. A. Openov, Phys. Solid State 50(5), 996 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    I. V. Davydov, A. I. Podlivaev, and L. A. Openov, JETP Lett. 87(7), 385 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    N. N. Degtyarenko, V. F. Elesin, N. E. L’vov, L. A. Openov, and A. I. Podlivaev, Phys. Solid State 45(5), 1002 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  20. 20.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    A. Schäfer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    K. P. Katin and M. M. Maslov, Russ. J. Phys. Chem. B 5(5), 770 (2011).CrossRefGoogle Scholar
  25. 25.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51(3), 645 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53(12), 2532 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    A. I. Podlivaev and K. P. Katin, JETP Lett. 92(1), 52 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    K. P. Katin and A. I. Podlivaev, Phys. Solid State 52(2), 436 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zhuang, and X.-J. Ning, J. Chem. Phys. 132, 064103 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    X.-J. Xu, W.-H. Zhu, and H.-M. Xiao, J. Energ. Mater. 27, 247 (2009).CrossRefGoogle Scholar
  32. 32.
    O. Isayev, L. Gorb, M. Qasim, and J. Leszczynski, J. Phys. Chem. B 112, 11005 (2008).CrossRefGoogle Scholar
  33. 33.
    N. H. Naik, G. M. Gore, B. R. Gandhe, and A. K. Sikder, J. Hazard. Mater. 159, 630 (2008).CrossRefGoogle Scholar
  34. 34.
    R. Liu, Z. Zhou, Y. Yin, L. Yang, and T. Zhang, Thermochim. Acta 537, 13 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. N. Degtyarenko
    • 1
  • K. P. Katin
    • 1
  • M. M. Maslov
    • 1
  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia

Personalised recommendations