Advertisement

Physics of the Solid State

, Volume 56, Issue 7, pp 1483–1489 | Cite as

To the theory of adsorption on epitaxial graphene: Model approach

  • S. Yu. Davydov
Graphenes

Abstract

A model of adsorption on epitaxial graphene has been constructed in two stages: first, the density of states of a graphene monolayer adsorbed on a solid substrate has been found and then an adsorbed atom has been placed on the epitaxial graphene thus formed. Metallic and semiconductor substrates have been considered. Charge transfer between the adatom and epitaxial graphene has been calculated. The roles of the substrate and graphene layer in the formation of the electronic state of adatoms have been estimated.

Keywords

Valence Band Graphene Layer Occupation Number Metallic Substrate Dirac Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. No- voselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Haas, W. A. de Heer, and E. H. Conrad, J. Phys: Condens. Matter 20, 323202 (2008).Google Scholar
  3. 3.
    Y. H. Wu, T. Yu, and Z. X. Shen, J. Appl. Phys. 108, 071301 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, arXiv:1110.6557.Google Scholar
  5. 5.
    S. Yu. Davydov and G. I. Sabirova, Phys. Solid State 53(3), 654 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. Yu. Davydov, Phys. Solid State 53(12), 2545 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    S. Yu. Davydov, Semiconductors 47(1), 95 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    P. W. Anderson, Phys. Rev. 124, 41 (1961).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Yu. Davydov, Semiconductors 45(5), 618 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. Yu. Davydov, Tech. Phys. Lett. 37(5), 476 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. Yu. Davydov, Semiconductors 48(1), 46 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    S. Yu. Davydov, Tech. Phys. 59(4), 624 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Yu. Davydov, Tech. Phys. Lett. 38(2), 175 (2012); S. Yu. Davydov, Semiconductors 46 (2), 193 (2012); S. Yu. Davydov, Semiconductors 46 (3), 363 (2012); S. Yu. Davydov, Phys. Solid State 54 (8), 1728 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fedorus, Sov. Phys.—Usp. 20(5), 432 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    O. M. Braun and V. K. Medvedev, Sov. Phys.—Usp. 32(4), 328 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    M. Caragiu and S. Finberg, J. Phys.: Condens. Matter 17, R995 (2005).ADSGoogle Scholar
  17. 17.
    S. Yu. Davydov, Appl. Surf. Sci. 257, 1506 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations