Advertisement

Physics of the Solid State

, Volume 56, Issue 6, pp 1228–1233 | Cite as

Effect of water on the α-β phase transition in a surface quartz layer

  • V. I. VettegrenEmail author
  • G. A. Sobolev
  • S. M. Kireenkova
  • Yu. A. Morozov
  • A. I. Smul’skaya
  • R. I. Mamalimov
  • V. B. Kulik
Phase Transitions

Abstract

The temperature dependence of the α-phase concentration in surface layers and in the bulk of quartz plates cut out at a distance of ∼2 mm from the natural growth surface of druses extracted at the Dodo deposit in the Polar Urals has been studied using infrared and Raman spectroscopy. It has been found that, in the bulk of the sample, the temperature dependence behaves as expected for a first-order phase transition; more specifically, below 800 K, it remains unchanged and, at high temperatures, approaches zero. In surface layers with thicknesses of ∼0.15 and ∼0.8 μm, the α-phase concentration decreases monotonically by approximately 10% with an increase in the temperature to 780 K. The temperature dependence of the α-phase concentration in the layer at a depth of ∼6 μm passes through two minima, namely, at ∼370 and ∼570 K, at which the concentration of this phase decreases by about one half. This is accompanied by an increase in the concentration of the β-phase. The revealed behavior of the α-phase concentration with an increase in the temperature has been assigned to the influence of water on crystal lattice distortions near growth dislocations. At 370 K, free water evaporates from grain boundaries, and at 570 K, the water bound by hydrogen bonds to the SiOH groups. The evaporation of water affects stresses at grain boundaries, and it is this factor that brings about a change of the α-phase concentration. It has been demonstrated that tensile stresses generated with increasing temperature in a near-surface quartz layer to ∼0.8 μm thick can reach ∼170 MPa. The stresses create microcracks, which culminate in destruction of the sample. The generation of the tensile stresses is explained by an increase in the volume of the microcrystal layer located at a depth from ∼1 to ∼8 μm from its surface as a result of the increase in the β-phase concentration in it.

Keywords

Quartz Crystal Phase Concentration Natural Quartz SiOH Group Crystal Lattice Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Vettegren, R. I. Mamalimov, G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, and A. I. Smul’skaya, Phys. Solid State 55(5), 1063 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    V. I. Vettegren, R. I. Mamalimov, and G. A. Sobolev, Phys. Solid State 55(10), 2102 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J. Etchepare, M. Merian, and P. Kaplan, J. Chem. Phys. 60, 1873 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 (1961).ADSCrossRefGoogle Scholar
  6. 6.
    G. S. Landsberg, Optics (FIZMATLIT, Moscow, 2003) [in Russian].Google Scholar
  7. 7.
    K. Iishi and H. Yamacuchi, Am. Mineral. 60, 907 (1975).Google Scholar
  8. 8.
    G. A. Malygin, Phys.—Usp. 44(2), 173 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    W. Kenzig, Ferroelectrics and Antiferroelectrics (Springer-Verlag, Berlin, 1957; Inostrannaya Literatura, Moscow, 1960).Google Scholar
  10. 10.
    P. M. Dove, N. Han, and J. J. De Yoreo, Proc. Natl. Acad. Sci. USA 102, 15357 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    H. Klapper, in Springer Handbook of Crystal Growth, Ed. by G. Dhanaraj, K. Burappa, V. Passard, and M. Dudlay (Springer-Verlag, Berlin, 2010), Vol. XXX–VIII, Part A, p. 93.Google Scholar
  12. 12.
    P. Rudolph, in Springer Handbook of Crystal Growth, Ed. by G. Dhanaraj, K. Burappa, V. Passard, and M. Dudlay (Springer-Verlag, Berlin, 2010), Vol. XXX–VIII, Part A, p. 159.Google Scholar
  13. 13.
    D. S. Sarma, M. R. Mohan, and P. S. R. Prasad, Open Mineral. J. 4, 1 (2010).Google Scholar
  14. 14.
    R. J. Bakker and J. B. Jansen, Contrib. Mineral. Petrol. 116, 7 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    S. M. Sterner and R. J. Bodnar, Geochim. Cosmochim. 48, 2659 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    H. Yamagishi, S. Nakashima, and Y. Ito, Phys. Chem. Miner. 24, 66 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    M. I. Heggie, Nature (London) 355, 337 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    A. Ayensu, J. Mater. Sci. 32, 123 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    A. K. Kronenberg and S. H. Kirby, J. Geophys. Res., B 91,12, 12723 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Hiki, J. Phys. Soc. Jpn. 15, 586 (1960).ADSCrossRefGoogle Scholar
  21. 21.
    G. A. Sobolev, A. V. Ponomarev, A. N. Nikitin, A. M. Balagurov, and R. N. Vasin, Izv., Phys. Solid Earth 40(10), 788 (2004).Google Scholar
  22. 22.
    A. N. Nikitin, R. N. Vasin, A. M. Balagurov, G. A. Sobolev, and A. V. Ponomarev, Phys. Part. Nucl. Lett. 3(1), 46 (2006).CrossRefGoogle Scholar
  23. 23.
    A. N. Nikitin, G. V. Markova, A. M. Balagurov, R. N. Vasin, and O. V. Alekseeva, Crystallogr. Rep. 52(2), 428 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    H. E. Bommei, W. P. Mason, and A. W. Warner, Phys. Rev. 102, 64 (1956).ADSCrossRefGoogle Scholar
  25. 25.
    O. Madelung, Festkörpertheorie (Springer-Verlag, Berlin, 1972).Google Scholar
  26. 26.
    D. L. Lakshtanov, S. V. Sinogeikin, and J. D. Bass, Phys. Chem. Miner. 34, 11 (2007).ADSCrossRefGoogle Scholar
  27. 27.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. I. Vettegren
    • 1
    Email author
  • G. A. Sobolev
    • 2
  • S. M. Kireenkova
    • 2
  • Yu. A. Morozov
    • 2
  • A. I. Smul’skaya
    • 2
  • R. I. Mamalimov
    • 1
  • V. B. Kulik
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations