Advertisement

Physics of the Solid State

, Volume 56, Issue 5, pp 1071–1080 | Cite as

Thermal conductivity at the amorphous-nanocrystalline phase transition in beech wood biocarbon

  • L. S. Parfen’eva
  • T. S. Orlova
  • B. I. Smirnov
  • I. A. Smirnov
  • H. Misiorek
  • A. Jezowski
  • J. Ramirez-Rico
Thermal Properties

Abstract

High-porosity samples of beech wood biocarbon (BE-C) were prepared by pyrolysis at carbonization temperatures T carb = 650, 1300, and 1600°C, and their resistivity ρ and thermal conductivity κ were studied in the 5–300 and 80–300 K temperature intervals. The experimental results obtained were evaluated by invoking X-ray diffraction data and information on the temperature dependences ρ(T) and κ(T) for BE-C samples prepared at T carb = 800, 1000, and 2400°C, which were collected by the authors earlier. An analysis of the κ(T carb) behavior led to the conclusion that the samples under study undergo an amorphous-nanocrystalline phase transition in the interval 800°C < T carb < 1000°C. Evaluation of the electronic component of the thermal conductivity revealed that the Lorentz number of the sample prepared at T carb = 2400°C exceeds by far the classical Sommerfeld value, which is characteristic of metals and highly degenerate semiconductors.

Keywords

Thermal Conductivity Electrical Resistivity Carb Amorphous Carbon Carbonization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002).CrossRefGoogle Scholar
  2. 2.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Dominguez-Rodriguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
  3. 3.
    F. Carmona, P. Delhaes, G. Keryer, and J. P. Manceu, Solid State Commun. 14, 1183 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    S. Mrozowski, J. Low. Temp. Phys. 35, 231 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    J. G. Hernandez, I. Hernandez-Calderon, C. A. Luengo, and R. Tsu, Carbon 20, 201 (1982).CrossRefGoogle Scholar
  6. 6.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martínez-Fernández, Phys. Solid State 53(2), 276 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Mucha, Phys. Solid State 53(11), 2244 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, and M. C. Vera, Phys. Solid State 53(11), 2398 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).CrossRefGoogle Scholar
  11. 11.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(3), 441 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(12), 2245 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(10), 2023 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52(6), 1115 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Gantmakher, Electrons and Disorder in Solids (Fizmatgiz, Moscow, 2003; Clarendon, Oxford, 2005).Google Scholar
  16. 16.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez, and J. Ramirez-Rico, Phys. Solid State 55(9), 1884 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    C. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
  18. 18.
    C. E. Byrne and D. C. Nagle, Carbon 41, 15 (2003).CrossRefGoogle Scholar
  19. 19.
    C. Zollfzank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  20. 20.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  21. 21.
    T. E. Wilkes, J. Y. Pastor, J. Llorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    T. E. Wilkes, M. L. Young, R. E. Sepulveda, D. C. Dunand, and K. T. Faber, Scr. Mater. 55, 1083 (2006).CrossRefGoogle Scholar
  23. 23.
    A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    A. L. Love, J. Appl. Phys. 22, 252 (1951).ADSGoogle Scholar
  25. 25.
    E. A. Bel’skaya and A. S. Tarabanov, in Thermophysical Properties of Solids: Collection of Papers (Naukova Dumka, Kiev, 1971), p. 111 [in Russian].Google Scholar
  26. 26.
    E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).Google Scholar
  27. 27.
    A. Balandin, Nat. Mater. 10, 569 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. S. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).Google Scholar
  29. 29.
    K. W. Garrett and H. M. Rosenberg, J. Phys. D: Appl. Phys. 7, 1247 (1974).ADSCrossRefGoogle Scholar
  30. 30.
    C. L. Choy and D. Greig, J. Phys. C: Solid State Phys. 8, 3121 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, D. Wlosewicz, and A. Jezowski, Phys. Solid State 53(8), 1747 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    N. V. Kolomoets, Sov. Phys. Solid State 8(4), 799 (1966).Google Scholar
  33. 33.
    Q. G. Zhang, B. Y. Cao, X. Zhang, M. Fujii, and K. Takahashi, Phys. Rev. B: Condens. Matter 74, 134109 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. S. Parfen’eva
    • 1
  • T. S. Orlova
    • 1
  • B. I. Smirnov
    • 1
  • I. A. Smirnov
    • 1
  • H. Misiorek
    • 2
  • A. Jezowski
    • 2
  • J. Ramirez-Rico
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Trzebiatowski Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  3. 3.Departamento de Fisica de la Materia Condensada-Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations