Physics of the Solid State

, Volume 56, Issue 5, pp 1039–1047 | Cite as

Band offsets in heterojunctions formed by oxides with cubic perovskite structure

  • A. I. Lebedev
Surface Physics and Thin Films


A number of recent discoveries on heterostructures formed by oxides suggest the emergence of a new direction in microelectronics, the oxide electronics. In the present work, band offsets in nine heterojunctions formed by titanates, zirconates, and niobates with the cubic perovskite structure are calculated from first principles. The effect of strain in contacting oxides on their energy structure; the GW corrections to the band edge positions resulting from many-body effects; and the conduction band edge splitting resulting from spinorbit coupling are consistently taken into account. It is shown that the neglect of the many-body effects can cause errors in the determination of the band offsets, reaching 0.36 eV. The fundamental inapplicability of the transitivity rule often used to determine the band offsets in heterojunctions by comparing the band offsets in a pair of heterojunctions formed by the components of the heterojunction under study with a third common component is demonstrated. The cause of the inapplicability is explained.


Band Edge Orbit Coupling Conduction Band Edge Energy Band Diagram Valence Band Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science (Washington) 317, 1196 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London) 456, 624 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science (Washington) 313, 1942 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7, 298 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    C. H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, and J.-M. Triscone, Science (Washington) 284, 1152 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    X. Hong, A. Posadas, A. Lin, and C. H. Ahn, Phys. Rev. B: Condens. Matter 68, 134415 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    T. Kanki, H. Tanaka, and T. Kawai. Appl. Phys. Lett. 89, 242506 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    H. J. A. Molegraaf, J. Hoffman, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J.-M. Triscone, Adv. Mater. (Weinheim) 21, 3470 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Mannhart and D. G. Schlom, Science (Washington) 327, 1607 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, Science (Washington) 324, 63 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    C. Wang, K. Juan Jin, Z. Tang Xu, L. Wang, C. Ge, H. Bin Lu, H. Zhong Guo, M. He, and G. Zhen Yang, Appl. Phys. Lett. 98, 192901 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 94, 246802 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    H. Kohlstedt, N. A. Pertsev, J. Rodríguez Contreras, and R. Waser, Phys. Rev. B: Condens. Matter 72, 125341 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthélémy, and M. Bibes, Nature (London) 460, 81 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    J. Padilla, W. Zhong, and D. Vanderbilt, Phys. Rev. B: Condens. Matter 53, R5969 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    B. Meyer and D. Vanderbilt, Phys. Rev. B: Condens. Matter 65, 104111 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    J. Junquera and P. Ghosez, Nature (London) 422, 506 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    N. Sai, A. M. Kolpak, and A. M. Rappe, Phys. Rev. B: Condens. Matter 72, 020101 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, and J. Ramdani, J. Vac. Sci. Technol. A 19, 934 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    F. Amy, A. S. Wan, A. Kahn, F. J. Walker, and R. A. McKee, J. Appl. Phys. 96, 1635 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    J. Junquera, M. Zimmer, P. Ordejón, and P. Ghosez, Phys. Rev. B: Condens. Matter 67, 155327 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, Phys. Rev. B: Condens. Matter 84, 045317 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    R. Schafranek, J. D. Baniecki, M. Ishii, Y. Kotaka, K. Yamanka, and K. Kurihara, J. Phys. D: Appl. Phys. 45, 055303 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    L. Qiao, T. C. Droubay, V. Shutthanandan, Z. Zhu, P. V. Sushko, and S. A. Chambers, J. Phys.: Condens. Matter 22, 312201 (2010).ADSGoogle Scholar
  29. 29.
    R. Schafranek, J. D. Baniecki, M. Ishii, Y. Kotaka, and K. Kurihara, New J. Phys. 15, 053014 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    L. Colombo, R. Resta, and S. Baroni, Phys. Rev. B: Condens. Matter 44, 5572 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    A. I. Lebedev, Phys. Solid State 51(2), 362 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    A. I. Lebedev, Phys. Solid State 52(7), 1448 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    F. Bruneval and X. Gonze, Phys. Rev. B: Condens. Matter 78, 085125 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B: Condens. Matter 58, 3641 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    C. G. Van de Walle and R. M. Martin, Phys. Rev. B: Condens. Matter 34, 5621 (1986).ADSCrossRefGoogle Scholar
  38. 38.
    R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, and A. Pasquarello, Phys. Rev. Lett. 100, 186401 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    D. Cociorva, W. G. Aulbur, and J. W. Wilkins, Solid State Commun. 124, 63 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    K. Johnston, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B: Condens. Matter 71, 100103 (2005).ADSCrossRefGoogle Scholar
  41. 41.
    L. Kim, J. Kim, U. V. Waghmare, D. Jung, and J. Lee, Phys. Rev. B: Condens. Matter 72, 214121 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    A. I. Lebedev, Phys. Solid State 51(11), 2324 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    E. Bousquet, J. Junquera, and P. Ghosez, Phys. Rev. B: Condens. Matter 82, 045426 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    L. M. Falicov and M. Cuevas, Phys. Rev. 164, 1025 (1967).ADSCrossRefGoogle Scholar
  45. 45.
    H. Kroemer, in Molecular Beam Epitaxy and Hetero-structures, Ed. by L. L. Cheng and K. Ploog (M. Nijhoff, Dordrecht, The Netherlands, 1985), p. 331.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations