Advertisement

Physics of the Solid State

, Volume 56, Issue 5, pp 1033–1038 | Cite as

Photonic crystals and glasses from monodisperse spherical mesoporous silica particles filled with nickel

  • D. A. Kurdyukov
  • D. A. Eurov
  • E. Yu. Stovpiaga
  • S. A. Yakovlev
  • D. A. Kirilenko
  • V. G. Golubev
Low-Dimensional Systems

Abstract

Films of photonic crystals and photonic glasses have been grown by the methods of vertical deposition and sedimentation from a suspension of monodisperse spherical mesoporous silica particles (MSMSP). A method of filling MSMSP pores with nickel, which is based on the adsorption and capillary phenomena in mesopores, has been developed. The composition and structure of the obtained materials have been studied.

Keywords

Photonic Crystal Atomic Force Microscopy Image Nickel Oxide Nickel Nitrate Vertical Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 2008).Google Scholar
  2. 2.
    Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. M. De La Rue (Taylor and Francis, Boca Raton, Florida, 2012).Google Scholar
  3. 3.
    D. S. Wiersma, Nat. Phys. 4, 359 (2008).CrossRefGoogle Scholar
  4. 4.
    V. N. Bogomolov, V. G. Golubev, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, A. V. Prokofiev, V. V. Ratnikov, N. A. Feoktistov, and N. V. Sharenkova, Tech. Phys. Lett. 24(4), 326 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. Lett. 91, 213903 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Fedyanin, O. A. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, Appl. Phys. Lett. 87, 151111 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    D. A. Kurdyukov, N. A. Feoktistov, A. V. Nashchekin, Yu. M. Zadiranov, A. E. Aleksenskii, A. Ya. Vul’, and V. G. Golubev, Nanotechnology 23, 015601 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. Yu. Davydov, V. G. Golubev, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, N. V. Sharenkova, P. Brogueira, and R. Schwarz, Nanotechnology 11, 291 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    V. Yu. Davydov, R. E. Dunin-Borkovski, V. G. Golubev, J. L. Hutchison, N. F. Kartenko, D. A. Kurdyukov, A.B. Pevtsov, N. V. Sharenkova, J. Sloan, and L. M. Sorokin, Semicond. Sci. Technol. 16, L5 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, and V. G. Golubev, Appl. Phys. Lett. 86, 071108 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Il’inskii, R. A. Aliev, D. A. Kurdyukov, N. V. Sharenkova, E. B. Shadrin, and V. G. Golubev, Phys. Status Solidi A 203, 2073 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, A. V. Sel’kin, E. B. Shadrin, A. V. Il’inskii, and R. Boeyink, Semiconductors 36(9), 1043 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    A. B. Pevtsov, D. A. Kurdyukov, V. G. Golubev, A. V. Akimov, A. A. Meluchev, A. V. Sel’kin, A. A. Kaplyanskii, D. R. Yakovlev, and M. Bayer, Phys. Rev. B: Condens. Matter 75, 153101 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    A. L. Pokrovsky, V. Kamaev, C. Y. Li, Z. V. Vardeny, A. L. Efros, D. A. Kurdyukov, and V. G. Golubev, Phys. Rev. B: Condens. Matter 71, 165114 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Akimov, A. A. Meluchev, D. A. Kurdyukov, A. V. Scherbakov, A. Holst, and V. G. Golubev, Appl. Phys. Lett. 90, 171108 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    T. V. Murzina, E. M. Kim, R. V. Kapra, I. V. Moshnina, O. A. Aktsipetrov, D. A. Kurdyukov, S. F. Kaplan, V. G. Golubev, M. A. Bader, and G. Marowsky, Appl. Phys. Lett. 88, 022501 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Grudinkin, S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, and V. G. Golubev, J. Phys. Chem. C 112, 17855 (2008).CrossRefGoogle Scholar
  18. 18.
    J. S. King, D. P. Gaillot, E. Graugnard, and C. J. Summers, Adv. Funct. Mater. 18, 1063 (2006).CrossRefGoogle Scholar
  19. 19.
    J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Adv. Mater. (Weinheim) 12, 888 (2000).CrossRefGoogle Scholar
  20. 20.
    D. A. Kurdyukov, N. F. Kartenko, and V. G. Golubev, J. Alloys Compd. 492, 611 (2010).CrossRefGoogle Scholar
  21. 21.
    V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, and G. A. Emelchenko, Nanotechnology 22, 275718 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37(4), 378 (2011).CrossRefGoogle Scholar
  23. 23.
    E. Yu. Trofimova, S. A. Grudinkin, Yu. A. Kukushkina, D. A. Kurdyukov, A. V. Medvedev, M. A. Yagovkina, and V. G. Golubev, Phys. Solid State 54(6), 1298 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 016615 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid J. 73(4), 546 (2011).CrossRefGoogle Scholar
  27. 27.
    D. A. Kurdyukov, Nanotekhnika 4, 18 (2007).Google Scholar
  28. 28.
    D. A. Eurov, D. A. Kurdyukov, E. Yu. Trofimova, S. A. Yakovlev, L. V. Sharonova, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 55(8), 1718 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    W. M. Keely and H. W. Maynor, J. Chem. Eng. Data 8, 297 (1963).CrossRefGoogle Scholar
  30. 30.
    Ž. D. Živković, D. T. Živković, and D. B. Grujičić, J. Therm. Anal. 53, 617 (1998).CrossRefGoogle Scholar
  31. 31.
    H. Schäfer Chemische Transportreaktionen (Wiley, Weinheim, 1962; Mir, Moscow, 1964) [in German and in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. A. Kurdyukov
    • 1
    • 2
  • D. A. Eurov
    • 1
  • E. Yu. Stovpiaga
    • 1
    • 2
  • S. A. Yakovlev
    • 1
  • D. A. Kirilenko
    • 1
  • V. G. Golubev
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations