Physics of the Solid State

, Volume 56, Issue 4, pp 812–815 | Cite as

Solid-phase synthesis of manganese silicides on the Si(100)2 × 1 surface

  • S. N. Varnakov
  • M. V. Gomoyunova
  • G. S. Grebenyuk
  • V. N. Zabluda
  • S. G. Ovchinnikov
  • I. I. Pronin
Low-Dimensional Systems

Abstract

The solid-phase synthesis of manganese silicides on the Si(100)2 × 1 surface coated at room temperature by a 2-nm-thick manganese film has been investigated using high-energy-resolution photoelectron spectroscopy with synchrotron radiation. The dynamics of variation of the phase composition and electronic structure of the near-surface region with increasing sample annealing temperature to 600°C, has been revealed. It has been shown that, under these conditions, a solid solution of silicon in manganese, metallic manganese monosilicide MnSi, and semiconductor silicide MnSi1.7 are successively formed on the silicon surface. The films of both silicides are not continuous, with the fraction of the substrate surface occupied by them decreasing with increasing annealing temperature. The binding energies of the Si 2p and Mn 3p electrons in the compounds synthesized have been determined.

Keywords

Increase Annealing Temperature Solid Phase Synthesis Silicide Formation Solid Phase Epitaxy Silicide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    T. Hagio, S. Ohuchi, Y. Matsuoka, and S. Hasegawa, Surf. Sci. 419, 134 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    A. Kumar, M. Tallarida, M. Hansmann, U. Starke, and K. Horn, J. Phys. D: Appl. Phys. 37, 1083 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    S. Azatyan, M. Iwari, and V. G. Lifshits, Surf. Sci. 589, 106 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    H. Lippitz, J. J. Paggel, and P. Fumagalli, Surf. Sci. 575, 307 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    M. R. Klause, A. Stollenwerk, J. Reed, and V. P. La Bella, Phys. Rev. B: Condens. Matter 75, 205326 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    J. H. Grytzelius, H. M. Zhang, and L. S. O. Johansson, Phys. Rev. B: Condens. Matter 78, 155406 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C. A. Nolph, E. Vescovo, and F. Reinke, Appl. Surf. Sci. 255, 7642 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    Z.-Q. Zou and W.-C. Li, Phys. Lett. A 375, 849 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. Kahwaji, R. A. Gordon, E. D. Crozier, and T. L. Monchesky, Phys. Rev. B: Condens. Matter. 85, 014405 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    J. Wang, M. Hirai, M. Kusaka, and M. Iwami, Appl. Surf. Sci. 113–114, 53 (1997).CrossRefGoogle Scholar
  12. 12.
    E. Karhu, S. Kahwaji, T. L. Monchesky, C. Parsons, M. D. Robertson, and C. Maunders, Phys. Rev. B: Condens. Matter 82, 184417 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    S. N. Varnakov, M. V. Gomoyunova, G. S. Grebenyuk, V. N. Zabluda, S. G. Ovchinnikov, and I. I. Pronin, Phys. Solid State 56(2) 380, (2014).ADSCrossRefGoogle Scholar
  14. 14.
    M. V. Gomoyunova and I. I. Pronin, Tech. Phys. 49(10), 1249 (2004).CrossRefGoogle Scholar
  15. 15.
    E. Magnano, F. Bondino, C. Cepek, F. Parmigiani, and M. C. Mozzati, Appl. Phys. Lett. 96, 152503 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    Y. C. Lian and L. J. Chen, Appl. Phys. Lett. 48, 358 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    M. V. Gomoyunova, I. I. Pronin, D. E. Malygin, N. R. Gall, D. V. Vyalikh, and S. L. Molodtsov, Surf. Sci. 600, 2449 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    F. Sirotti, M. DeSantis, X. Jin, and G. Rossi, Phys. Rev. B: Condens. Matter 49, 11134 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    M. V. Gomoyunova, D. E. Malygin, I. I. Pronin, A. S. Voronichikhin, D. V. Vyalikh, and S. L. Molodtsov, Surf. Sci. 601, 5069 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    M. R. Klause, A. Stollenwerk, M. Licurse, and V. P. LaBella, J. Vac. Sci. Technol., A 24, 1480 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. N. Varnakov
    • 1
    • 2
  • M. V. Gomoyunova
    • 3
  • G. S. Grebenyuk
    • 3
  • V. N. Zabluda
    • 1
  • S. G. Ovchinnikov
    • 1
  • I. I. Pronin
    • 3
  1. 1.Kirensky Institute of PhysicsSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Reshetnev Siberian State Aerospace UniversityKrasnoyarskRussia
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations