Advertisement

Physics of the Solid State

, Volume 56, Issue 4, pp 715–719 | Cite as

Pyroelectric and piezoelectric properties of thin PZT films at the morphotropic phase boundary

  • O. N. SergeevaEmail author
  • A. A. Bogomolov
  • D. A. Kiselev
  • M. D. Malinkovich
  • I. P. Pronin
  • E. Yu. Kaptelov
  • S. V. Senkevich
  • V. P. Pronin
Ferroelectricity

Abstract

It has been shown that, in polycrystalline thin PZT films with the Zr/Ti = 0.535/0.465 ratio of ions in octahedral positions of the perovskite structure, the permittivity and the pyroelectric and piezoelectric responses increase with increasing linear sizes of growth blocks to reach anomalously large values. It has been assumed that the observed effects originate from a combination of two factors, namely, the possible presence of the monoclinic phase and a well-developed domain structure in the films.

Keywords

Piezoelectric Property Barium Titanate Monoclinic Phase Morphotropic Phase Boundary Piezoelectric Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Scott and C. A. Paz de Araujo, Science (Washington) 246, 1400 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    C. A. Paz de Araujo and G. Taylor, Ferroelectrics 116, 215 (1991).CrossRefGoogle Scholar
  3. 3.
    D. L. Polla, Microelectron. Eng. 29, 51 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    R. W. Whatmore, Ferroelectrics 225, 179 (1999).CrossRefGoogle Scholar
  5. 5.
    P. Muralt, Rep. Prog. Phys. 64, 1339 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, and Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007).CrossRefGoogle Scholar
  7. 7.
    W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    K. A. Vorotilov, M. I. Yanovskaya, and O. A. Dorokhova, Integr. Ferroelectr. 3, 33 (1993).CrossRefGoogle Scholar
  9. 9.
    J. M. Bell, P. C. Knight, and G. R. Johnston, in Ferroelectric Thin Films: Synthesis and Basic Properties, Ed. by C. A. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon and Breach, Amsterdam, 1996), p. 93.Google Scholar
  10. 10.
    G. J. Willems, D. J. Wouters, and H. E. Maes, Integr. Ferroelectr. 15, 19 (1997).CrossRefGoogle Scholar
  11. 11.
    B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    B. Noheda, L. Wu, and Y. Zhu, Phys. Rev. B: Condens. Matter. 66, 060103(R) (2002).ADSCrossRefGoogle Scholar
  13. 13.
    D.-S. Sheen and J.-J. Kim, Phys. Rev. B: Condens. Matter. 67, 144102 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    L. Yan, J.-F. Li, H. Cao, and D. Viehland, Appl. Phys. Lett. 89, 262905 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    B. Noheda and D. E. Cox, Phase Transitions 79, 5 (2006).CrossRefGoogle Scholar
  16. 16.
    E. Aksel, J. S. Forrester, J. L. Jones, P. A. Thomas, K. Page, and M. R. Suchomel, Appl. Phys. Lett. 98, 152901 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    S. V. Senkevich, I. P. Pronin, E. Yu. Kaptelov, O. N. Sergeeva, N. A. Il’in, and V. P. Pronin, Tech. Phys. Lett. 39(4), 400 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    S. Shannigrahi and K. Yao, J. Appl. Phys. 98, 034104 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    R. Dudde, D. Raden, H.-J. Quenzer, and B. Warner, NSTI Nanotech. 2, 348 (2010).Google Scholar
  20. 20.
    P. Gerber, U. Bottger, and R. Waser, J. Appl. Phys. 100, 124105 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    M. Es-Souni and A. Piorra, Mater. Res. Bull. 36, 2563 (2001).CrossRefGoogle Scholar
  22. 22.
    V. P. Afanas’ev, S. V. Bogachev, N. V. Zaïtseva, E. Yu. Kaptelov, G. P. Kramar, A. A. Petrov, and I. P. Pronin, Tech. Phys. 41(6), 607 (1996).Google Scholar
  23. 23.
    V. P. Pronin, S. V. Senkevich, E. Yu. Kaptelov, and I. P. Pronin, J. Surf. Invest. 4(5), 703 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Wada, T. Muraishi, K. Yokoh, K. Yako, H. Kamemoto, and T. Tsurumi, Ferroelectrics 355, 37 (2007).CrossRefGoogle Scholar
  25. 25.
    Y. L. Wang, A. K. Tagantsev, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 91, 062905 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    Y. L. Wang, Z. B. He, D. Damjanovic, A. K. Tagantsev, G. C. Deng, and N. Setter, J. Appl. Phys. 110, 014101 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. N. Sergeeva
    • 1
    Email author
  • A. A. Bogomolov
    • 1
  • D. A. Kiselev
    • 2
  • M. D. Malinkovich
    • 2
  • I. P. Pronin
    • 3
  • E. Yu. Kaptelov
    • 3
  • S. V. Senkevich
    • 3
  • V. P. Pronin
    • 4
  1. 1.Tver State UniversityTverRussia
  2. 2.National University of Science and Technology “MISiS,”MoscowRussia
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Herzen State Pedagogical University of RussiaSt. PetersburgRussia

Personalised recommendations