Physics of the Solid State

, Volume 56, Issue 4, pp 827–834 | Cite as

Optical and electrophysical properties of nanocomposites based on PEDOT: PSS and gold/silver nanoparticles

  • A. V. Kukhta
  • A. E. Pochtenny
  • A. V. Misevich
  • I. N. Kukhta
  • E. M. Semenova
  • S. A. Vorobyova
  • E. Sarantopoulou
Surface Physics and Thin Films

Abstract

The absorption spectra in the visible region and current-voltage characteristics in a wide range of electric fields have been investigated at the macroscopic level (planar structures) and at the microscopic level (using a conductive atomic force microscope) in films based on the electroactive polymer PEDOT: PSS and gold/silver nanoparticles (PEDOT: PSS + Au/AgNP). It has been shown that the behavior of the current-voltage characteristics of the nanocomposite films depends significantly on the electric field strength. It has been found that the introduction of gold nanoparticles into PEDOT: PSS in weak electric fields leads to an increase in the bulk conductance by almost two orders of magnitude (due to donor-acceptor interactions), a 50% decrease in the conduction activation energy, and an increase in the sensitivity to adsorbed oxygen. It has been demonstrated that electrical conduction of PEDOT: PSS + AuNP films is provided by hopping charge transfer both in the system of intrinsic localized states and in the system of impurity states of adsorbed oxygen. In strong electric fields, the current-voltage characteristics exhibit a different behavior in the forward and reverse scanning modes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Nalwa, Handbook of Organic Electronics and Photonics (American Scientific, Los Angeles, United States, 2008).Google Scholar
  2. 2.
    J. C. Scott and L. D. Bozano, Adv. Mater. (Weinheim) 19, 1452 (2007).CrossRefGoogle Scholar
  3. 3.
    T. W. Kim, Y. Yang, F. Li, and W. L. Kwan, NPG Asia Mater. 4, e18 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. S. Hsiao, W. T. Whang, C. P. Chen, and Y. C. Chen, J. Mater. Chem. 18, 5948 (2008).CrossRefGoogle Scholar
  5. 5.
    C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, J. Mater. Chem. 22, 1206 (2012).CrossRefGoogle Scholar
  6. 6.
    A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Khimiya, Moscow, 2000) [in Russian].Google Scholar
  7. 7.
    C. C. Oey, A. B. Djurisic, S. Y. Kwong, C. H. Cheung, W. K. Chan, J. M. Nunzi, and P. C. Chui, Thin Solid Films 492, 253 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    F. Terzi, C. Zanardi, V. Martina, L. Pigani, and R. Seeber, J. Electroanal. Chem. 75, 619 (2008).Google Scholar
  9. 9.
    A. V. Kukhta, E. E. Kolesnik, D. V. Ritchik, A. I. Lesnikovich, M. N. Nichick, and S. A. Vorobyova, in Physics, Chemistry and Application of Nanostructures, Ed. by V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin (World Scientific, Singapore, 2005), p. 96.Google Scholar
  10. 10.
    C.-H. Lai, I-C. Wu, C.-C. Kang, J.-F. Lee, M.-L. Ho, and P.-T. Chou, Chem. Commun. (Cambridge) 2009, 1996 (2009).CrossRefGoogle Scholar
  11. 11.
    D. Hodko, M. Gamboa-Aldeco, and O. Murphy, J. Solid State Electrochem. 13, 1063 (2009).CrossRefGoogle Scholar
  12. 12.
    R. G. Melendez, K. J. Moreno, I. Moggio, E. Arias, A. Ponce, I. Llanera, and S. E. Moya, Mater. Sci. Forum 644, 85 (2010).CrossRefGoogle Scholar
  13. 13.
    C.-Y. Lee, Y.-J. Choi, S. Yoon, and H.-H. Park, Synth. Met. 160, 621 (2010).CrossRefGoogle Scholar
  14. 14.
    O. M. Folarin, E. R. Sadiku, and A. Maity, J. Phys. Sci. 6, 4869 (2011).Google Scholar
  15. 15.
    J. Mathiyarasu, S. Senthilkumar, K. L. N. Phani, and V. Yegnaraman, J. Nanosci. Nanotechnol. 7, 2206 (2007).CrossRefGoogle Scholar
  16. 16.
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater. (Weinheim) 12, 481 (2000).CrossRefGoogle Scholar
  17. 17.
    T. A. Skotheim and J. R. Reynolds, Conjugated Polymers: Processing and Applications (CRC Press, Boca Raton, Florida, United States, 2006).Google Scholar
  18. 18.
    B. D. Chin, J. Phys. D: Appl. Phys. 41, 215104 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. (Weinheim) 18, 789 (2006).CrossRefGoogle Scholar
  20. 20.
    L. A. A. Pettersson, S. Ghosh, and O. Inganas, Org. Electron. 3, 143 (2002).CrossRefGoogle Scholar
  21. 21.
    S. Ghosh and O. Inganas, Synth. Met. 121, 1321 (2001).CrossRefGoogle Scholar
  22. 22.
    I. A. Milevich, S. A. Vorobyova, and A. I. Lesnikovich, Vestn. Belarus. Gos. Univ., Ser. 2 1, 33 (2011).Google Scholar
  23. 23.
    W. Wang, Sh. Efrima, and O. Regev, Langmuir 14, 602 (1998).CrossRefGoogle Scholar
  24. 24.
    A. E. Pochtenny and A. V. Misevich, Tech. Phys. Lett. 29 (1), 26 (2003).Google Scholar
  25. 25.
    A. V. Kukhto, E. E. Kolesnik, A. Lappo, A. E. Pochtenny, and I. K. Grabchev, Phys. Solid State 46(12), 2306 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, Adv. Funct. Mater. 15, 1933 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Yang, J. Ouyang, L. Ma, R. J.-H. Tseng, and C.-W. Chu, Adv. Funct. Mater. 16, 1001 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Wu, L. Ma, and Y. Yang, Phys. Rev. B: Condens. Matter 69, 15 321 (2004).CrossRefGoogle Scholar
  30. 30.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1984).Google Scholar
  31. 31.
    N. F. Mott and E. A. Davis, Electron Processes in Non-crystalline Materials (Clarendon, London, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Kukhta
    • 1
  • A. E. Pochtenny
    • 2
  • A. V. Misevich
    • 2
  • I. N. Kukhta
    • 3
  • E. M. Semenova
    • 4
  • S. A. Vorobyova
    • 4
  • E. Sarantopoulou
    • 5
  1. 1.Research Institute of Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Belarusian State Technological UniversityMinskBelarus
  3. 3.Institute of Chemistry of New MaterialsNational Academy of Sciences of BelarusMinskBelarus
  4. 4.Research Institute of Physics-Chemistry ProblemsBelarusian State UniversityMinskBelarus
  5. 5.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations