Physics of the Solid State

, Volume 56, Issue 4, pp 659–665 | Cite as

X-ray photoelectron spectra and composition of YBa2Cu3O7 − δ films prepared by laser ablation

  • Yu. V. Blinova
  • M. V. Kuznetsov
  • V. R. Galakhov
  • S. V. Sudareva
  • T. P. Krinitsina
  • E. I. Kuznetsova
  • M. V. Degtyarev
  • O. V. Snigirev
  • N. V. Porokhov
Superconductivity

Abstract

The Y3d, Ba3d5/2, Cu2p3/2, and O1s X-ray photoelectron spectra of thick (600 nm) superconducting YBa2Cu3O7 − δ films deposited on textured Ni-W substrates with Y2O3 + ZrO2 and CeO2 buffer layers have been studied. It has been established that, after the mechanical removal of surface layers with a diamond scraper (and as the analyzed region of the film approaches the interface), a decrease in the oxygen content leads to a decrease of the orthophase fraction and an increase of the tetraphase and Cu+ ion fractions. This is caused by the presence of elastic stresses in the superconducting film due to the lattice misfit between the phases making up a composite sample. These stresses prevent oxygen diffusion involved in oxidizing annealing. The spectra of the superconducting film have not revealed signals generated by elements of the substrate and buffer layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Krinitsina, S. V. Sudareva, Yu. V. Blinova, E. I. Kuznetsova, E. P. Romanov, M. V. Degtyarev, O. V. Snigirev, N. V. Porokhov, D. N. Rakov, and Yu. N. Belotelova, Phys. Solid State 55(2), 262 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    P. N. Barnes, R. M. Nekkanti, T. J. Haugan, T. A. Campbell, N. A. Yust, and J. M. Evans, Supercond. Sci. Technol. 17, 957 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. V. Blinova, V. R. Galakhov, M. V. Kuznetsov, S. V. Sudareva, A. S. Semenova, and A. S. Shkvarin, Phys. Met. Metallogr. 111(4), 361 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    N. M. Plakida, High-Temperature Superconductivity: Experiment and Theory (Springer-Verlag, Berlin, 1994; International Program of Education, Moscow, 1996).Google Scholar
  5. 5.
    H. W. Seo, Q. Y. Chen, P. van der Heide, and W. K. Chu, http://arxiv.org/ftp/cond-mat/papers/0603/0603767.
  6. 6.
    G. Frank, C. Ziegler, and W. Gopel, Phys. Rev. B: Condens. Matter 43, 2828 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    P. Paturi, H. Huhtinen, K. Laajalehto, and R. Laiho, Supercond. Sci. Technol. 13, 622 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    P. N. Barnes, S. Mukhopadhyay, R. Nekkanti, T. Haugan, R. Biggers, and I. Maartense, Adv. Cryog. Eng. 48B, 614 (2002).CrossRefGoogle Scholar
  9. 9.
    P. N. Barnes, S. Mukhopadhyay, T. Haugan, S. Krishnaswami, J. C. Tolliver, and I. Maartense, IEEE Trans. Appl. Supercond. 13, 3643 (2003).CrossRefGoogle Scholar
  10. 10.
    P. P. Vemulakonda, Master of Science in Engineering Thesis (Wright State University, Dayton, Ohio, United States, 2007), p. 84; P. P. Vemulakonda, https:etd.ohiolink.edu/ap:10:0:NO:10:P10-ACCESSION-NUM: wright1176576035Google Scholar
  11. 11.
    N. Nucker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, Phys. Rev. B: Condens. Matter 37, 5158 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    G. van der Laan, C. Westra, C. Haas, and G. A. Sawatsky, Phys. Rev. B: Condens. Matter 23, 4369 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    U. Welp, M. Grimsditch, S. Fleshler, W. Nessler, J. Downey, G. W. Crabtree, and J. Guimpel, Phys. Rev. Lett. 69, 2130 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    B. W. Kang, A. Goyal, D. F. Lee, J. E. Mathis, E. D. Specht, P. M. Martin, D. M. Kroeger, M. Paranthaman, and S. Sathyamurthy, J. Mater. Res. 17, 1750 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    S. R. Foltyn, Q. X. Jia, P. N. Arendt, L. Kinder, Y. Fan, and J. F. Smith, Appl. Phys. Lett. 75, 3692 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    S. V. Sudareva, M. V. Kuznetsov, E. I. Kuznetsova, Yu. V. Blinova, E. P. Romanov, and I. B. Bobylev, Phys. Met. Metallogr. 108(6), 569 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    C. R. Brundle and D. E. Fowler, Surf. Sci. Rep. 19, 143 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    X. D. Wu, A. Inam, M. S. Hegde, T. Venkatesan, C. C. Chang, E. W. Chase, B. Wilkens, and J. M. Tarascon, Phys. Rev. B: Condens. Matter 38, 9307 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    A. Gauzzi, H. J. Mathieu, J. H. James, and B. Kellett, Vacuum 41, 870 (1990).CrossRefGoogle Scholar
  20. 20.
    P. Srivastava, B. R. Sekhar, N. L. Saini, S. K. Sharma, K. B. Garg, B. Mercey, Ph. Lecoeur, and H. Murray, Solid State Commun. 88, 105 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    R. P. Vasquez, J. Electron Spectrosc. Relat. Phenom. 66, 241 (1993).CrossRefGoogle Scholar
  22. 22.
    Y. Fukuda, M. Nagoshi, T. Suzuki, Y. Namba, Y. Syono, and M. Tachiki, Phys. Rev. B: Condens. Matter 39, 11494 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    A. Hartmann, G. J. Russell, and K. N. R. Taylor, Physica C (Amsterdam) 205, 78 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. V. Blinova
    • 1
  • M. V. Kuznetsov
    • 2
  • V. R. Galakhov
    • 1
  • S. V. Sudareva
    • 1
  • T. P. Krinitsina
    • 1
  • E. I. Kuznetsova
    • 1
  • M. V. Degtyarev
    • 1
  • O. V. Snigirev
    • 3
  • N. V. Porokhov
    • 3
  1. 1.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Solid State ChemistryUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations