Physics of the Solid State

, Volume 56, Issue 3, pp 449–455 | Cite as

Structural position and charge state of nickel in SrTiO3

Dielectrics

Abstract

The properties of nickel-doped strontium titanate are studied using X-ray diffraction and XAFS spectroscopy. It is shown that, independently of preparation conditions, the most stable phases in the samples are single-phase SrTi1 − xNixO3 solid solution and NiTiO3 which can coexist. According to the EXAFS data, in the single-phase SrTi0.97Ni0.03O3 sample the nickel atoms substitute the titanium atoms and are on-center ones. In this case, no distortions of the oxygen octahedron which would appear in the presence of oxygen vacancies in the nickel environment were detected. An analysis of the XANES spectra shows that the nickel charge state in NiTiO3 is 2+, whereas in the SrTi1 − xNixO3 solid solution it is close to 4+. It is shown that the strongest light absorption in doped samples is associated with the presence of tetravalent Ni in the SrTi1 − xNixO3 solid solution. This doping seems to be the most promising for solar energy converters based on the bulk photovoltaic effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Nauka, Moscow, 1992; CRC Press, Boca Raton, Florida, United States, 1992).Google Scholar
  2. 2.
    A. M. Glass, D. von der Linde, and T. J. Negran, Appl. Phys. Lett. 25, 233 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    M. Qin, K. Yao, and Y. C. Liang, Appl. Phys. Lett. 93, 122904 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J. W. Bennett, I. Grinberg, and A. M. Rappe, J. Am. Chem. Soc. 130, 17409 (2008).CrossRefGoogle Scholar
  6. 6.
    G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Phys. Rev. B: Condens. Matter 83, 205115 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Inaguma, M. Yoshida, T. Tsuchiya, A. Aimi, K. Tanaka, T. Katsumata, and D. Mori, J. Phys.: Conf. Ser. 215, 012131 (2010).ADSGoogle Scholar
  8. 8.
    Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K.-i. Hiraki, T. Takahashi, and H. Saitoh, J. Am. Chem. Soc. 133, 16920 (2011).CrossRefGoogle Scholar
  9. 9.
    X. F. Hao, A. Stroppa, S. Picozzi, A. Filippetti, and C. Franchini, Phys. Rev. B: Condens. Matter 86, 014116 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M. Takano, and J. P. Attfield, J. Am. Chem. Soc. 129, 14433 (2007).CrossRefGoogle Scholar
  11. 11.
    V. V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, and P. M. Vilarinho, Phys. Rev. Lett. 101, 165704 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    W. Kleemann, S. Bedanta, P. Borisov, V. V. Shvartsman, S. Miga, J. Dec, A. Tkach, and P. M. Vilarinho, Eur. Phys. J. B 71, 407 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Lebedev, I. A. Sluchinskaya, A. Erko, and V. F. Koz- lovskii, JETP Lett., 89(9), 457 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, Bull. Russ. Acad. Sci.: Phys. 74(9), 1235 (2010).CrossRefGoogle Scholar
  15. 15.
    I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, in Abstracts of Papers of the XIX All-Russian Conference on Physics of Ferroelectrics (VKS-19), Moscow, June 20–23, 2011, p. 116.Google Scholar
  16. 16.
    I. A. Sluchinskaya, A. I. Lebedev, V. F. Kozlovskii, and A. Erko, in Abstracts of Papers of the VIII National Conference “X-Rays, Synchrotron Radiation, Neutrons and Electrons for Nanosystems and Materials Research: Nano-Bio-Info-Cognitive Technologies,” Moscow, November 14–18, 2011, p. 347.Google Scholar
  17. 17.
    A. I. Lebedev, I. A. Sluchinskaya, V. N. Demin, and I. Manro, Izv. Akad. Nauk SSSR, Ser. Fiz. 60(10), 46 (1996).Google Scholar
  18. 18.
    A. I. Lebedev, I. A. Sluchinskaya, V. N. Demin, and I. H. Munro, Phys. Rev. B: Condens. Matter 55, 14770 (1997).ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    IFEFFIT project home page, http://cars9.uchicago.edu/ifeffit/.
  21. 21.
    M. Arjomand and D. J. Machin, J. Chem. Soc., Dalton Trans. 1055 (1975).Google Scholar
  22. 22.
    R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    R. Gottschall, R. Schöllhorn, M. Muhler, N. Jansen, D. Walcher, and P. Gütlich, Inorg. Chem. 37, 1513 (1998).CrossRefGoogle Scholar
  24. 24.
    A. N. Mansour and C. A. Melendres, J. Phys. Chem. A 102, 65 (1998).CrossRefGoogle Scholar
  25. 25.
    K. A. Müller, W. Berlinger, and R. S. Rubins, Phys. Rev. 186, 361 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    S.-Y. Wu, J.-Z. Lin, Q. Fu, and H.-M. Zhang, Phys. Scr. 75, 147 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    A. M. Beale, M. Paul, G. Sankar, R. J. Oldman, C. R. A. Catlow, S. French, and M. Fowles, J. Mater. Chem. 19, 4391 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Helmholtz-ZentrumBESSY GmbHBerlinGermany

Personalised recommendations