Advertisement

Physics of the Solid State

, Volume 56, Issue 3, pp 538–545 | Cite as

Effect of carbonization temperature on the microplasticity of wood-derived biocarbon

  • V. V. Shpeizman
  • T. S. Orlova
  • B. K. Kardashev
  • B. I. Smirnov
  • A. Gutierrez-Pardo
  • J. Ramirez-Rico
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

The uniaxial compression strength under stepped loading and the 325-nm-stepped deformation rate of biocarbon samples obtained by carbonization of beech wood at different temperatures in the 600–1600°C range have been measured using high-precision interferometry. It has been shown that the strength depends on the content of nanocrystalline phase in biocarbon. The magnitude of deformation jumps at micro- and nanometer levels and their variation with a change in the structure of the material and loading time have been determined. For micro- and nanometer-scale jumps, standard deviations of the differences between the experimentally measured deformation rate at loading steps and its magnitude at the smoothed fitting curve have been calculated, and the correlation of the error with the deformation prior to destruction has been shown. The results obtained have been compared with the previously published data on measurements of the elastic properties and internal friction of these materials.

Keywords

Carb Deformation Rate Carbonization Temperature Deformation Curve Medium Density Fiberboard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002).CrossRefGoogle Scholar
  2. 2.
    K. E. Pappacena, S. P. Gentry, N. E. Wilkes, M. T. Johnson, S. Xie, A. Davis, and K. T. Faber, J. Eur. Ceram. Soc. 29, 3069 (2009).CrossRefGoogle Scholar
  3. 3.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52(6), 1115 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53(2), 276 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).CrossRefGoogle Scholar
  7. 7.
    H. S. Park, J. J. Iang, K. H. Lee, K. H. Lim, S. B. Park, Y. S. Kim, and S. H. Hong, Int. J. Fract. 151, 233 (2008).CrossRefzbMATHGoogle Scholar
  8. 8.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  9. 9.
    M. A. Bautista, A. R. de Arellano-Lopez, J. Martinez-Fernandez, A. Bravo-Leon, and J. M. Lopez-Cepero, Int. J. Refract. Met. Hard Mater. 27, 431 (2009).CrossRefGoogle Scholar
  10. 10.
    T. E. Wilkes, J. Y. Pastor, J. Liorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(10), 1882 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(12), 2463 (2009).CrossRefGoogle Scholar
  13. 13.
    B. K. Kardashev, Yu. A. Burenkov, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 47(5), 886 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 52(10), 2076 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    B. K. Kardashev, T. S. Orlova, and B. I. Smirnov, A. Gutierrez, and J. Ramirez-Rico, Phys. Solid State 55(9), 1884 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Shpeizman, N. N. Peschanskaya, T. S. Orlova, and B. I. Smirnov, Phys. Solid State 51(12), 2458 (2009).CrossRefGoogle Scholar
  17. 17.
    N. N. Peschanskaya, Vysokomol. Soedin., Ser. A 31, 1181 (1989).Google Scholar
  18. 18.
    V. V. Shpeizman, N. N. Peschanskaya, and B. I. Smirnov, Phys. Solid State 50(5), 848 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    V. V. Shpeizman and N. N. Peschanskaya, Phys. Solid State 51(6), 1149 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    N. N. Peschanskaya, P. N. Yakushev, V. V. Shpeizman, A. S. Smolyanskii, A. S. Shvedov, and V. G. Cheremisov, Phys. Solid State 52(9), 1972 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Mucha, Phys. Solid State 53(11), 2244 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Shpeizman, P. N. Yakushev, Zh. V. Mukhina, E. V. Kuznetsov, and A. S. Smolyanskii, Phys. Solid State 55(5), 1002 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26, 18 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    J. Martinez-Fernandez, A. Munoz, A. R. de Arellano-Lopez, F. M. Varela-Feria, A. Dominguez-Rodriguez, and M. Singh, Acta Mater. 51, 3259 (2003).CrossRefGoogle Scholar
  25. 25.
    B. I. Smirnov, Yu. A. Burenkov, B. K. Kardashev, D. Singh, K. C. Goretta, and A. R. deArellano-Lopez, Phys. Solid State 43(11), 2094 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Shpeizman
    • 1
  • T. S. Orlova
    • 1
  • B. K. Kardashev
    • 1
  • B. I. Smirnov
    • 1
  • A. Gutierrez-Pardo
    • 2
  • J. Ramirez-Rico
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Departamento de Fisica de la Materia Condensada — Instituto de Ciencia de Materials de Sevilla (ICMS)Universidad de Sevilla-CSICSevillaSpain

Personalised recommendations