Physics of the Solid State

, Volume 56, Issue 3, pp 588–593 | Cite as

Photonic properties of two-dimensional high-contrast periodic structures: Numerical calculations

  • M. V. Rybin
  • I. S. Sinev
  • K. B. Samusev
  • A. Hosseinzadeh
  • G. B. Semouchkin
  • E. A. Semouchkina
  • M. F. Limonov
Optical Properties


The photon properties of two-dimensional periodic structures formed by infinite homogeneous dielectric cylinders packed in a square lattice have been investigated theoretically. Depending on the dielectric contrast between the cylinders and the surrounding medium, the photonic band structure, transmission spectra of crystals with a finite number of layers, and spectra of Mie scattering by an isolated cylinder have been calculated. The calculations have been performed for the TE polarization. The transformation of photonic stop-bands corresponding to Bragg and Mie resonances has been analyzed using the obtained data. The main effect consists in “castling” energy positions of the Bragg stop-bands and Mie stop-bands. For low-contrast photonic crystals, the low-frequency region of the energy spectrum is determined by Bragg stop-bands, and Mie stop-bands are located higher in energy. With an increase in the dielectric contrast, the energy of Mie stop-bands decreases, and they intersect the region of Bragg stop-bands weakly varying in the TE polarization and form the low-energy region of the spectrum.


Photonic Crystal Stop Band Reciprocal Lattice Vector Photonic Structure Infinite Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. M. De La Rue (CRC Press, Boca Raton, Florida, United States, 2012).Google Scholar
  2. 2.
    S. O’Brien and J. B. Pendry, J. Phys.: Condens. Matter 14, 4035 (2002).ADSGoogle Scholar
  3. 3.
    K. Vynck, D. Felbacq, E. Centeno, A Cǎbuz, D. Cassagne, and B. Guizal, Phys. Rev. Lett. 102, 133 901 (2009).CrossRefGoogle Scholar
  4. 4.
    E. Kallos, I. Chremmos, and V. Yannopapas, Phys. Rev. B: Condens. Matter 86, 245108 (2012).CrossRefADSGoogle Scholar
  5. 5.
    Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, Mater. Today 12, 60 (2009).CrossRefGoogle Scholar
  6. 6.
    E. A. Semouchkina, G. B. Semouchkin, M. Lanagan, and C. A. Randall, IEEE Trans. Microwave Theory Tech. 53, 1477 (2005).CrossRefADSGoogle Scholar
  7. 7.
    M. Iwasaki, E. A. Semouchkina, G. B. Semouchkin, K. Z. Rajab, C. A. Randall, and M. T. Lanagan, Jpn. J. Appl. Phys. 45, 2835 (2006).CrossRefADSGoogle Scholar
  8. 8.
    E. Semouchkina, Metamaterials: Classes, Properties and Applications (Nova Science, New York, 2010), pp. 137–164.Google Scholar
  9. 9.
    E. Semouchkina, Metamaterial (InTech, Rijeka, Croatia, 2012), pp. 91–112.Google Scholar
  10. 10.
    F. Chen, X. Wang, and E. Semouchkina, Microwave Opt. Technol. Lett. 54, 555 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Hosseinzadeh and E. Semouchkina, Microwave Opt. Technol. Lett. 55, 134 (2013).CrossRefGoogle Scholar
  12. 12.
    V. M. Shalaev and A. K. Sarychev, Electrodynamics of Metamaterials (World Scientific, Singapore, 2007).zbMATHGoogle Scholar
  13. 13.
    V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, Nuovo Cimento Soc. Ital. Fis., D 17, 1349 (1995).CrossRefADSGoogle Scholar
  14. 14.
    S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 056603 (2001).CrossRefADSGoogle Scholar
  15. 15.
    A. V. Baryshev, A. V. Ankudinov, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Phys. Solid State 44(9), 1648 (2002).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, Phys. Solid State 46(7), 1331 (2004).CrossRefADSGoogle Scholar
  17. 17.
    E. Palacios-Lidón, B. H. Juárez, E. Castillo-Martinez, and C. López, J. Appl. Phys. 97, 63502 (2005).CrossRefGoogle Scholar
  18. 18.
    M. V. Rybin, A. V. Baryshev, M. Inoue, A. A. Kaplyanskii, V. A. Kosobukin, V. F. Limonov, A. K. Samusev, and A. V. Sel’kin, Photonics Nanostruct.: Fundam. Appl. 4, 146 (2006).CrossRefADSGoogle Scholar
  19. 19.
    M. V. Rybin, K. B. Samusev, and M. F. Limonov, Photonics Nanostruct.: Fundam. Appl. 5, 119 (2007).CrossRefADSGoogle Scholar
  20. 20.
    M. V. Rybin, K. B. Samusev, and M. F. Limonov, Phys. Solid State 49(12), 2280 (2007).CrossRefADSGoogle Scholar
  21. 21.
    M. V. Rybin, A. V. Baryshev, A. B. Khanikaev, M. Inoue, K. B. Samusev, A. V. Sel’kin, G. Yushin, and M. F. Limonov, Phys. Rev. B: Condens. Matter 77, 205106 (2008).CrossRefADSGoogle Scholar
  22. 22.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
  23. 23.
    M. F. Limonov, Y. E. Kitaev, A. V. Chugreev, V. P. Smirnov, Y. S. Grushko, S. G. Kolesnik, and S. N. Kolesnik, Phys. Rev. B: Condens. Matter 57, 7586 (1998).CrossRefADSGoogle Scholar
  24. 24.
    P. Tronc, Y. Kitaev, G. Wang, M. Limonov, A. Panfilov, and G. Neu, Phys. Status Solidi B 216, 599 (1999).CrossRefADSGoogle Scholar
  25. 25.
    Y. E. Kitaev, M. F. Limonov, A. G. Panfilov, R. A. Evarestov, and A. P. Mirgorodsky, Phys. Rev. B: Condens. Matter 49, 9933 (1994).CrossRefADSGoogle Scholar
  26. 26.
    J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, New Jersey, United States, 2008).Google Scholar
  27. 27.
    J. A. Stratton, Electromagnetic Theory (Wiley, New York, 2007).Google Scholar
  28. 28.
    A. V. Moroz, M. F. Limonov, M. V. Rybin, and K. B. Samusev, Phys. Solid State 53(6), 1105 (2011).CrossRefADSGoogle Scholar
  29. 29.
    I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, Yu. S. Kivshar’, A. Gaidukeviichute, R. V. Kiyan, and B. N. Chichkov, JETP Lett. 95(9), 457 (2012).CrossRefADSGoogle Scholar
  30. 30.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).CrossRefADSGoogle Scholar
  31. 31.
    R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, Phys. Rev. B: Condens. Matter 48, 8434 (1993).CrossRefADSGoogle Scholar
  32. 32.
    D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed. (Wiley, New York, 2010).zbMATHGoogle Scholar
  33. 33.
    S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Rybin
    • 1
    • 2
  • I. S. Sinev
    • 1
    • 2
  • K. B. Samusev
    • 1
    • 2
  • A. Hosseinzadeh
    • 3
  • G. B. Semouchkin
    • 3
  • E. A. Semouchkina
    • 3
  • M. F. Limonov
    • 1
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Department of Electrical and Computer EngineeringMichigan Technological UniversityHoughton, MichiganUSA

Personalised recommendations