Advertisement

Physics of the Solid State

, Volume 56, Issue 3, pp 580–587 | Cite as

Cascades of Fano resonances in Mie scattering

  • M. V. Rybin
  • I. S. Sinev
  • K. B. Samusev
  • M. F. Limonov
Optical Properties

Abstract

The interference nature of resonant Mie scattering, which is described within the Fano model, has been demonstrated. The interference is caused by interaction of an incident electromagnetic wave with reemitted waves that correspond to eigenmodes of a scattering particle. Mie scattering due to the interference can be represented in the form of cascades of resonance lines of different shapes, each of which is described by the classical Fano formula. The effect is observed in resonant light scattering by an arbitrary body of revolution and discussed in detail using the example of scattering by an infinite homogeneous dielectric cylinder.

Keywords

Photonic Crystal Spectral Dependence Fano Resonance Random Laser Background Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
  2. 2.
    H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).Google Scholar
  3. 3.
    J. A. Stratton, Electromagnetic Theory (Wiley, New York, 2007), Vol. 33.Google Scholar
  4. 4.
    Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. De La Rue (CRC Press, Boca Raton, Florida, United States, 2012).Google Scholar
  5. 5.
    M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A. Tip, Phys. Rev. Lett. 66, 3132 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    P. D. García, R. Sapienza, and C. López, Adv. Mater. (Weinheim) 22, 12 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. López, Nat. Photonics 2, 429 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Noginov, Solid-State Random Lasers (Springer-Verlag, Berlin, 2005).Google Scholar
  9. 9.
    S. O’Brien, and J. B. Pendry, J. Phys.: Condens. Matter 14, 4035 (2002).ADSGoogle Scholar
  10. 10.
    K. Vynck, D. Felbacq, E. Centeno, A. Cǎbuz, D. Cassagne, and B. Guizal, Phys. Rev. Lett. 102, 133901 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    E. Kallos, I. Chremmos, and V. Yannopapas, Phys. Rev. B: Condens. Matter 86, 245108 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, Mater. Today 12, 60 (2009).CrossRefGoogle Scholar
  13. 13.
    D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, Appl. Phys. Lett. 100, 201113 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    B. Rolly, B. Stout, and N. Bonod, Opt. Express 20, 20376 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    L. Lorenz, K. Dan. Vidensk. Selsk. Skr., Naturvidensk. Math. Afd. 6, 1 (1890).Google Scholar
  17. 17.
    A. Love, Proc. London Math. Soc. 1, 308 (1898).CrossRefMathSciNetGoogle Scholar
  18. 18.
    G. Mie, Ann. Phys. 330, 377 (1908).CrossRefGoogle Scholar
  19. 19.
    P. Debye, Ann. Phys. 335, 57 (1909).CrossRefGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 6th ed. (Fizmatlit, Moscow, 2004; Butterworth-Heinemann, Oxford, 2005).Google Scholar
  21. 21.
    U. Fano, Phys. Rev. 124, 1866 (1961).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    J.-P. Connerade and A. M. Lane, Rep. Prog. Phys. 51, 1439 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science (Washington) 280, 567 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    N. M. Kabachnik and I. P. Sazhina, J. Phys. B: At. Mol. Phys. 9, 1681 (1976). a?ADSCrossRefGoogle Scholar
  25. 25.
    F. Cerdeira, T. A. Fjeldly, and M. Cardona, Phys. Rev. B: Solid State 8, 4734 (1973).ADSCrossRefGoogle Scholar
  26. 26.
    J. J. Hopfield, P. J. Dean, and D. G. Thomas, Phys. Rev. 158, 748 (1967).ADSCrossRefGoogle Scholar
  27. 27.
    M. F. Limonov, A. I. Rykov, S. Tajima, and A. Yamanaka, Phys. Rev. Lett. 80, 825 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    M. Limonov, S. Lee, S. Tajima, and A. Yamanaka, Phys. Rev. B: Condens. Matter 66, 054509 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    B. Friedl, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65, 915 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Francescato, V. Giannini, and S. A. Maier, ACS Nano 6, 1830 (2012).CrossRefGoogle Scholar
  31. 31.
    A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, ACS Nano 6, 6492 (2012).CrossRefGoogle Scholar
  34. 34.
    A. E. Cetin and H. Altug, ACS Nano 6, 9989 (2012).CrossRefGoogle Scholar
  35. 35.
    J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Science (Washington) 328, 1135 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, ACS Nano 6, 10222 (2012).CrossRefGoogle Scholar
  37. 37.
    N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, S. Ruoff, and G. Shvets, Nano Lett. 13, 1111 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    A. E. Miroshnichenko and Y. S. Kivshar, Nano Lett. 12, 6459 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, Y. S. Kivshar, Phys. Rev. Lett. 100, 043903 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    K. A. Tetz, L. Pang, and Y. Fainman, Opt. Lett. 31, 1528 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    A. Artar, A. A. Yanik, and H. Altug, Nano Lett. 11, 3694 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    G. Levy-Yurista and A. A. Friesem, Appl. Phys. Lett. 77, 1596 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, Opt. Express 14, 369 (2006).ADSCrossRefGoogle Scholar
  45. 45.
    S. Fan and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 65, 235112 (2002).ADSCrossRefGoogle Scholar
  46. 46.
    J. Song, R. P. Zaccaria, M. B. Yu, and X. W. Sun, Opt. Express 14, 8812 (2006).ADSCrossRefGoogle Scholar
  47. 47.
    M. V. Rybin, A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, Photonics Nanostruct. 8, 86 (2010).ADSCrossRefGoogle Scholar
  48. 48.
    M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, Phys. Rev. Lett. 103, 023901 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, Nat. Commun. 3, 914 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, Nuovo Cimento Soc. Ital. Fis., D 17, 1349 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    A. V. Baryshev, A. V. Ankudinov, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyatyu, Phys. Solid State 44(9), 1648 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, Phys. Solid State 46(12), 1331 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    M. V. Rybin, K. B. Samusev, and M. F. Limonov, Phys. Solid State 49(12), 2280 (2007).ADSCrossRefGoogle Scholar
  54. 54.
    M. V. Rybin, K. B. Samusev, and M. F. Limonov, Photonics Nanostruct.: Fundam. App. 5, 119 (2007).ADSCrossRefGoogle Scholar
  55. 55.
    M. V. Rybin, A. V. Baryshev, A. B. Khanikaev, M. Inoue, K. B. Samusev, A. V. Sel’kin, G. Yushin, and M. F. Limonov, Phys. Rev. B: Condens. Matter 77, 205106 (2008).ADSCrossRefGoogle Scholar
  56. 56.
    K. B. Samusev, G. N. Yushin, M. V. Rybin, and M. F. Limonov, Phys. Solid State 50(7), 1280 (2008).ADSCrossRefGoogle Scholar
  57. 57.
    M. Tribelsky, A. Miroshnichenko, and Y. Kivshar, Europhys. Lett. 97, 44005 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Rybin
    • 1
    • 2
  • I. S. Sinev
    • 1
    • 2
  • K. B. Samusev
    • 1
    • 2
  • M. F. Limonov
    • 1
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations