Advertisement

Physics of the Solid State

, Volume 56, Issue 2, pp 282–286 | Cite as

Application of X-ray absorption spectroscopy to the investigation of charge states of iron ions in iron borate nanoceramics

  • V. V. MesilovEmail author
  • V. R. Galakhov
  • B. A. Gizhevskii
  • V. S. Gaviko
  • N. A. Ovechkina
  • A. Buling
Dielectrics

Abstract

The method of X-ray absorption spectroscopy has been used for the investigation of charge states of iron ions in iron borate nanoceramics prepared by shear deformation under pressure. The experimental Fe 2p X-ray absorption spectra have been presented in comparison with the calculation of atomic multiplets of iron ions taking into account the charge transfer from the 2p orbitals of oxygen to the 3d orbitals of iron and the crystal-field splitting of the 3d orbitals of iron. Our results indicate that, in addition to iron ions in the ground charge state Fe3+, nanostructured FeBO3 contains a few percent of Fe2+ ions. It has been found that an increase in the degree of plastic deformation (the rotation angle of the anvils) leads to a decrease in the size of crystallites and to an increase in the concentration of Fe2+ ions without the formation of new phases. The results of this work agree with the magnetic and optical measurements and confirm high defectness of FeBO3 nanoceramics.

Keywords

Charge State Crystal Field Splitting Total Electron Yield Charge Transfer Energy Iron Borate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Kurtzig, R. Wolfe, R. C. Lecraw, and J. W. Nielsen, Appl. Phys. Lett. 14, 350 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    R. Wolfe, A. J. Kurtzig, and R. C. Lecraw, Appl. Phys. 41, 1218 (1970).CrossRefGoogle Scholar
  3. 3.
    I. Bernal, C. W. Struck, and J. G. White, Acta Crystallogr. 16, 849 (1963).CrossRefGoogle Scholar
  4. 4.
    V. P. Petrov, G. A. Smolenskii, A. P. Paugurt, S. A. Kizhaev, and M. K. Chizhov, Sov. Phys. Solid State 14(1), 87 (1972).Google Scholar
  5. 5.
    I. S. Edel’man, A. V. Malakhovskii, T. I. Vasil’eva, and V. N. Seleznev, Sov. Phys. Solid State 14(9), 2442 (1972).Google Scholar
  6. 6.
    N. F. Mott, Metal-Insulator Transitions (CRC, London, 1990).Google Scholar
  7. 7.
    S. Hüfner, F. Hulliger, J. Osterwalder, and T. Riesterer, Solid State Commun. 50, 83 (1984).CrossRefGoogle Scholar
  8. 8.
    J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 44, 943 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    R. E. Cohen, I. I. Mazin, and D. G. Isaak, Science (Washington) 275, 654 (1997).CrossRefGoogle Scholar
  11. 11.
    I. A. Troyan, A. G. Gavrilyuk, V. A. Sarkisyan, I. S. Lyubutin, R. Rüffer, O. Leupold, A. Barla, B. Doyle, and A. I. Chumakov, JETP Lett. 74(1), 24 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Sarkisyan, I. A. Troyan, I. S. Lyubutin, A. G. Gavrilyuk, and A. F. Kashuba, JETP Lett. 76(11), 664 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Troyan, M. I. Eremets, A. G. Gavrilyuk, I. S. Lyubutin, and V. A. Sarkisyan, JETP Lett. 78(1), 13 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    A. G. Gavrilyuk, I. A. Troyan, S. G. Ovichinnikov, I. S. Lyubutin, and V. A. Sarkisyan, J. Exp. Theor. Phys. 99(3), 566 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, S. G. Ovchinnikov, and V. A. Sarkisyan, J. Exp. Theor. Phys. 100(4), 688 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, and V. V. Struzhkin, Phys. Rev. B: Condens. Matter 79, 085125 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    S. G. Ovchinnikov and V. N. Zabluda, J. Exp. Theor. Phys. 98(1), 135 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Postnikov, S. Bartkowski, M. Neumann, R. A. Rupp, E. Z. Kurmaev, S. N. Shamin, V. V. Fedorenko, Phys. Rev. B: Condens. Matter 50, 14849 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    S. Shang, Y. Wang, Z. K. Liu, C. E. Yang, and S. Yin, Appl. Phys. Lett. 91, 253115 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    J. Kim, Y. Shvyd’ko, and S. G. Ovchinnikov, Phys. Rev. B: Condens. Matter 83, 235109 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, N. I. Lobachevskaya, M. Raekers, C. Taubitz, A. R. Cioroianu, and M. Neumann, J. Electron Spectrosc. Relat. Phenom. 185, 598 (2012).CrossRefGoogle Scholar
  22. 22.
    V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, A. S. Semenova, D. G. Kellerman, M. Raekers, and M. Neumann, Phys. Solid State 55(5), 943 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    N. B. Ivanova, V. V. Rudenko, A. D. Balaev, N. V. Kazak, S. G. Ovchinnikov, I. S. Edel’man, A. S. Fedorov, and P. V. Avramov, J. Exp. Theor. Phys. 94(2), 299 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    B. A. Gizhevskii, V. D. Zhuravlev, R. G. Zakharov, M. I. Zinigrad, E. A. Kozlov, L. I. Leont’ev, S. V. Naumov, S. A. Petrova, V. P. Pilyugin, A. Ya. Fishman, and N. M. Chebotaev, Dokl. Chem. 405(Part 2), 247 (2005).CrossRefGoogle Scholar
  25. 25.
    J. L. C. Rowsell, J. Gaubicher, and L. F. Nazar, J. Power Sources 97–98, 254 (2001).CrossRefGoogle Scholar
  26. 26.
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  27. 27.
    E. Stavitski and F. M. F. de Groot, Micron 41, 687 (2010).CrossRefGoogle Scholar
  28. 28.
    V. V. Mesilov, V. R. Galakhov, A. S. Semenova, D. G. Kellerman, and L. V. Elokhina, Phys. Solid State 53(2), 271 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    T. Higuchi, Y. S. Liu, P. Yao, P. A. Glans, and J. Guo, Phys. Rev. B: Condens. Matter 78, 085106 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    J. P. Crocombette, M. Pollak, F. Jollet, N. Thromat, and M. Gautier-Soyer, Phys. Rev. B: Condens. Matter 52, 3143 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
  32. 32.
    F. M. F. de Groot, Coord. Chem. Rev. 249, 31 (2005).CrossRefGoogle Scholar
  33. 33.
    K. Kuepper, I. Balasz, H. Hesse, A. Winiarski, K. C. Prince, M. Matteucci, D. Wett, R. Szargan, E. Burzo, and M. Neumann, Phys. Status Solidi A 201, 3252 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    R. D. Ivantsov, I. S. Edelman, E. V. Eremin, B. A. Gizhevskii, V. S. Gaviko, E. G. Gerasimov, and V. Rudenko, in Abstracts of the IV Euro-Asian Symposium “Trends in Magnetism,” Yekaterinburg, Russia, June 28–July 2, 2010, p. 110.Google Scholar
  35. 35.
    B. A. Gizhevskii, Yu. P. Sukhorukov, L. V. Nomerovannaya, A. A. Makhnev, Yu. S. Ponosov, A. V. Telegin, and E. V. Mostovshchikova, Solid State Phenom. 168–169, 317 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Mesilov
    • 1
    Email author
  • V. R. Galakhov
    • 1
  • B. A. Gizhevskii
    • 1
  • V. S. Gaviko
    • 1
  • N. A. Ovechkina
    • 1
  • A. Buling
    • 2
  1. 1.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations