Physics of the Solid State

, Volume 55, Issue 10, pp 2102–2107 | Cite as

Diffuse phase transition in a surface quartz layer with variations in temperature

  • V. I. VettegrenEmail author
  • R. I. Mamalimov
  • G. A. Sobolev
Phase Transitions


The temperature dependence of the α-phase concentration in surface layers of a solution-grown quartz crystal has been studied in the range 290–820 K. This has been achieved by measuring the intensity of the 695.1, 785.0, and 1061.5 cm−1 bands in the ɛ″(ν) IR damping spectra. It has been found that, in a surface layer ∼0.15 μm thick, the concentration of the α-phase behaves with increasing temperature as expected for a first-order phase transition, namely, before 800 K, it remains constant, after which at T → 846 K, tends to zero. At a distance from ∼1 to 20 μm from the surface, however, the concentration of the α-phase starts to decrease already at ∼350 K, while at 812 K it decreases to one-fifth of the original value. This is paralleled by an increase in the intensity of the 804 cm−1 band assigned to the β-phase. The diffusive pattern of the α-β phase transition is initiated by distortion of the quartz crystal lattice around growth dislocations. The internal stresses arising in these layers have been estimated from the shift of the band maxima. It has been established that at distances up to ∼1 μm from the surface, tensile stresses reaching ∼300–400 MPa appear at 400 K. These stresses drive in the surface layer of the macrocrystal microcracks culminating in total destruction of the sample. The appearance of tensile stresses is assigned to an increase in volume of the macrocrystal layer located at a distance from ∼1 to 20 μm from the surface and the growth in it of the β-phase concentration. At the same time, compressive stresses develop in a layer ∼1 to 20 μm thick at a temperature above 500 K, which reach a maximum at ∼650 K, to fall off thereafter with increasing temperature. The compression is caused by vibrations of growth dislocation loops in the temperature range specified.


Surface Layer Reflection Spectrum Quartz Crystal Phase Concentration Band Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Vettegren, R. I. Mamalimov, G. A. Sobolev, S. M. Kireenkova, Yu. M. Morozov, and A. I. Smul’skaya, Phys. Solid State 55(5), 1063 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121(5), 1324 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    J. Etchepare, M. Merian, and P. J. Kaplan, Chem. Phys. 60(5), 1873 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar
  6. 6.
    W. L. Bragg and R. E. Gibbs, Proc. R. Soc. London, Ser. A 109, 405 (1925).ADSCrossRefGoogle Scholar
  7. 7.
    R. E. Gibbs, Proc. R. Soc. London, Ser. A 107, 561 (1925).ADSCrossRefGoogle Scholar
  8. 8.
    K. Kihara, J. Eur. Mineral. 2, 63 (1990).Google Scholar
  9. 9.
    A. F. Wright and M. S. Lehmann, J. Solid State Chem. 36, 371 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    M. G. Tucker, D. A. Keen, and M. T. Dove, Mineral. Mag. 65(4), 489 (2001).CrossRefGoogle Scholar
  11. 11.
    A. N. Nikitin, R. N. Vasin, A. M. Balagurov, G. A. Sobolev, and A. V. Ponomarev, Phys. Part. Nucl. Lett. 3(1), 46 (2006).CrossRefGoogle Scholar
  12. 12.
    A. N. Nikitin, G. V. Markova, A. M. Balagurov, R. N. Vasin, and O. V. Alekseeva, Crystallogr. Rep. 52(3), 428 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    S. M. Shapiro, D. C. O’Shea, and H. Z. Cummins, Phys. Rev. Lett. 19(7), 361 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Spering, I. Farnan, and J. F. Stebbins, Phys. Chem. Miner. 19, 307 (1992).ADSGoogle Scholar
  15. 15.
    G. A. Sobolev, A. V. Ponomarev, A. N. Nikitin, A. M. Balagurov, and R. N. Vasin, Izv., Phys. Solid Earth 40(10), 788 (2004).Google Scholar
  16. 16.
    W. Kenzig, Ferroelectrics and Antiferroelectrics (Academic, London, 1957).Google Scholar
  17. 17.
    M. V. Belousov and B. E. Vol’f, JETP Lett. 31(6), 317 (1980).ADSGoogle Scholar
  18. 18.
    M. T. Dove, Am. Mineral. 82, 213 (1997).Google Scholar
  19. 19.
    G. A. Malygin, Phys.—Usp. 44(2), 173 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    B. N. Rolov and V. E. Yurkevich, Physics of Diffused Phase Transitions (Rostov State University, Rostov-on-Don, 1983).Google Scholar
  21. 21.
    P. M. Dove, N. Han, and J. J. De Yoreo, Proc. Natl. Acad. Sci. USA 102(43), 15357 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Springer Handbook of Crystal Growth (Springer-Verlag, Berlin, 2010), Vol. 38.CrossRefGoogle Scholar
  23. 23.
    A. R. Lang and V. F. Miuscov, J. Appl. Phys. 38, 2477 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    F. Gervais and B. Priou, Phys. Rev. B: Solid State 11(10), 3944 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    V. I. Vettegren, I. I. Novak, and K. J. Friedland, Int. J. Fract. 11(5), 789 (1975).CrossRefGoogle Scholar
  26. 26.
    O. Madelung, Festkorpertheorie (Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
  27. 27.
    D. L. Lakshtanov, S. V. Sinogeikin, and J. D. Bass, Phys Chem. Miner. 34, 11 (2007).ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Y. Hiki, Phys. Soc. Jpn. 15, 586 (1960).ADSCrossRefGoogle Scholar
  30. 30.
    H. E. Bommei, W. P. Mason, and A. W. Warner, Phys. Rev. 102(2), 64 (1956).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. I. Vettegren
    • 1
    Email author
  • R. I. Mamalimov
    • 1
  • G. A. Sobolev
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations