Skip to main content
Log in

Possible mechanisms of increase in heat capacity of nanostructured metals

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The problem of anomalously high experimental values of the heat capacity of metallic nanoclusters has been analyzed in terms of the thermodynamics of the surfaces, as well as based on the data of computer experiment. The heat capacity of ideal face-centered cubic (fcc) palladium clusters with a diameter of 6 nm in the temperature range of 150–300 K has been investigated using the molecular dynamics method with several tight-binding potentials. It has been found that, at a temperature T = 150 K, the heat capacity of a Pd nanoparticle exceeds the heat capacity of the bulk material by 12–16%. Based on the results of the theoretical treatment, computer simulation, and analysis of experimental data, it has been concluded that an increase in the heat capacity of the compacted nanomaterial is not determined by the high heat capacity of individual clusters. Apparently, the significant increase in the heat capacity of compact nanomaterials can be explained either by their disordered state or by the high content of different types of impurities, mainly hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  2. I. V. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  3. V. Novotny, P. P. M. Meincke, and J. H. P. Watson, Phys. Rev. Lett. 28(14), 901 (1972).

    Article  ADS  Google Scholar 

  4. V. Novotny and P. P. M. Meincke, Phys. Rev. B: Solid State 8(9), 4186 (1973).

    Article  ADS  Google Scholar 

  5. G. H. Comsa, D. Heitkamp, and H. S. Räde, Solid State Commun. 24(8), 547 (1977).

    Article  ADS  Google Scholar 

  6. G. Goll and H. Lohneyen, Nanostruct. Mater. 6, 559 (1995).

    Article  Google Scholar 

  7. Y. Y. Chen, Y. D. Yao, B. T. Lin. C. T. Suo, S. G. Shyu, and H. M. Lin, Nanostruct. Mater. 6(5–8), 597 (1995).

    Article  Google Scholar 

  8. Y. D. Yao, Y. Y. Chen, C. M. Hsu, H. M. Lin, C. Y. Tung, M. F. Tai, D. H. Wang, K. T. Wu, and T. C. Suo, Nanostruct. Mater. 6, 933 (1995).

    Article  Google Scholar 

  9. J. Trampenau, K. Bauszus, W. Petry, and U. Herr, Nanostruct. Mater. 6, 511 (1995).

    Article  Google Scholar 

  10. J. Rupp and R. Birringer, Phys. Rev. B: Condens. Matter 36, 7888 (1987).

    Article  ADS  Google Scholar 

  11. I. P. Bazarov, Thermodynamics (Vysshaya Shkola, Moscow, 1983) [in Russian].

    Google Scholar 

  12. E. A. Guggenheim, Modern Thermodynamics by the Methods of Willard Gibbs (Methuen, London, 1933; GNTIKhL, Moscow, 1941).

    Google Scholar 

  13. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  14. L. M. Shcherbakov and V. M. Samsonov, Thermodynamics of Surface Phenomena (Kalinin State University, Kalinin, 1985) [in Russian].

    Google Scholar 

  15. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  16. S. L. Gafner, L. V. Redel, Yu. Ya. Gafner, and V. M. Samsonov, J. Nanopart. Res. 13, 6419 (2011).

    Article  Google Scholar 

  17. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

  18. Kh. B. Khokonov, Surface Phenomena in Melts and in Solid Phases Arising from Them (Shtiintsa, Kishinev, 1974) [in Russian].

    Google Scholar 

  19. W. Missol, Interfacial Energies in Metals (Slask, Katowice 1975; Metallurgiya, Moscow, 1978), p. 34 [in Polish and in Russian].

    Google Scholar 

  20. F. Cleri and V. Rosato, Phys. Rev. B: Condens. Matter 48, 22 (1993).

    Article  ADS  Google Scholar 

  21. M. A. Karolewski, Radiat. Eff. Defects Solids 153, 239 (2001).

    Article  ADS  Google Scholar 

  22. C. Mottet, J. Goniakowski, F. Baletto, R. Ferrando, and G. Treglia, Phase Transform. 77(1–2), 101 (2004).

    Article  Google Scholar 

  23. J. Löffler, J. Weissmüller, and H. Gleiter,, Nanostruct. Mater. 6(5–8), 567 (1995).

    Article  Google Scholar 

  24. Y. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard, III, J. Chem. Phys. 115, 385 (2001).

    Article  ADS  Google Scholar 

  25. T. Mutschele and R. Kirchheim, Scr. Metall. 21(2), 135 (1987).

    Article  Google Scholar 

  26. U. Stuhr, H. Wipf, T.J. Udovic, J. Weißmuller, and H. Gleiter,, Nanostruct. Mater. 6, 555 (1995).

    Article  Google Scholar 

  27. J. A. Eastman, L. J. Thompson, and B. J. Kestel, Phys. Rev. B: Condens. Matter 48(1), 84 (1993).

    Article  ADS  Google Scholar 

  28. N. X. Sun and K. Lu, Phys. Rev. B: Condens. Matter 54(9), 6058 (1996).

    Article  ADS  Google Scholar 

  29. S. L. Gafner, L. V. Redel, and Yu. Ya. Gafner, JETP 114(3), 428 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Gafner.

Additional information

Original Russian Text © Yu.Ya. Gafner, S.L. Gafner, I.S. Zamulin, L.V. Redel, V.M. Samsonov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 10, pp. 2026–2035.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gafner, Y.Y., Gafner, S.L., Zamulin, I.S. et al. Possible mechanisms of increase in heat capacity of nanostructured metals. Phys. Solid State 55, 2142–2149 (2013). https://doi.org/10.1134/S1063783413100120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413100120

Keywords

Navigation