Physics of the Solid State

, Volume 55, Issue 9, pp 1941–1945 | Cite as

Structural instability in BaZrO3 crystals: Calculations and experiment

  • A. I. Lebedev
  • I. A. Sluchinskaya
Phase Transitions


The phonon spectrum of cubic barium zirconate is calculated from first principles using the density functional theory. An unstable R 25 phonon mode observed in the phonon spectrum indicates an instability of the BaZrO3 structure with respect to the oxygen octahedra rotations. It is shown that the symmetry of the ground-state structure of the crystal is I4/mcm. The local structure of BaZrO3 is studied by the EXAFS spectroscopy at the BaL III absorption edge at 300 K to search for the instability predicted by calculations. Anomalously high values of the Debye-Waller factor for the Ba-O atomic pairs (σ 1 2 ∼ 0.015 Å2) are attributed to the appearance of this structural instability. The average amplitude of the octahedra rotations caused by thermal vibrations is estimated from the measured σ 1 2 value to be ∼4° at 300 K. The closeness of the calculated energies of various distorted phases resulting from the condensation of the R 25 mode suggests a possible formation of the structural glass state in BaZrO3 as the temperature is lowered. It explains the origin of the disagreement between the results of calculations and diffraction experiments.


Perovskite Structure Range Order Phonon Spectrum Structural Instability Ground State Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Maiti, R. Guo, and A. S. Bhalla, Appl. Phys. Lett. 90, 182901 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    Q. Zhang, J. Zhai, and L. B. Kong, J. Adv. Dielectr. 2, 1230002 (2012).CrossRefGoogle Scholar
  3. 3.
    K. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, and J. M. Kiat, Phys. Rev. B: Condens. Matter 72, 205104 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    J. W. Bennett, I. Grinberg, and A. M. Rappe, Phys. Rev. B: Condens. Matter 73, 180102(R) (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. Bilić and J. D. Gale, Phys. Rev. B: Condens. Matter 79, 174107 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    C. Zhu, K. Xia, G. R. Qian, C. L. Lu, W. Z. Luo, K. F. Wang, and J.-M. Liu, J. Appl. Phys. 105, 044110 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    W. Zhong and D. Vanderbilt, Phys. Rev. Lett. 74, 2587 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Lebedev, Phys. Solid State 51(2), 362 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. I. Lebedev, Phys. Solid State 52(7), 1448 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    B. Rechav, Y. Yacoby, E. A. Stern, J. J. Rehr, and M. Newville, Phys. Rev. Lett. 72, 1352 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Lebedev, I. A. Sluchinskaya, V. N. Demin, and I. H. Munro, Phys. Rev. B: Condens. Matter 55, 14770 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    W. Jauch and A. Palmer, Phys. Rev. B: Condens. Matter 60, 2961 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Lebedev, Phys. Solid State 51(4), 802 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations